
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Co-AGSA: An efficient self-adaptive approach for constrained optimization
of analog IC based on the shrinking circles technique

Maryam Dehbashian, Mohammad Maymandi-Nejad⁎

Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

A R T I C L E I N F O

Keywords:
Advanced gravitational search algorithm
(AGSA)
Shrinking circles technique
Constraint handling
Co-evolutionary
Circuit sizing tool

A B S T R A C T

This paper aims to take a step forward to enhance the performance of the optimization kernel of electronic
design automation (EDA) tools by coping with the existing challenges in the analog circuit sizing problems. For
this purpose, a novel co-evolutionary-based optimization approach, called Co-AGSA, is proposed. In the Co-
AGSA, a self-adaptive penalty technique based on the concept of the co-evolution model is incorporated into a
powerful optimization algorithm, named advanced gravitational search algorithm (AGSA), to efficiently solve
more realistic constrained optimization problems. The performance of the Co-AGSA approach is first evaluated
by solving three constrained engineering design problems. Then, the optimization capability of the Co-AGSA-
based IC sizing tool is validated using three different case studies, i.e., a two-stage op-amp, a folded-cascode op-
amp and a two-stage telescopic cascode amplifier, to show the applicability of the proposed approach. The
results demonstrate that the Co-AGSA gives better performance compared to other approaches in terms of
efficiency, accuracy and robustness.

1. Introduction

The design of analog circuits in comparison with digital circuits is
more difficult, more time consuming and requires highly skilled
designers due to more complexity of analog circuits. Thus, to overcome
all these difficulties and speed up the design process, Computer Aided
Design (CAD) and Electronic Design Automation (EDA) tools were
developed. A complete overview of the available circuit sizing tools for
the design automation of analog circuits and state-of-the-art sizing
optimization techniques has been presented in [1].

In recent years, with the increasing progress in the development of
CAD software (e.g., CADENCE® [2], Synopsys® [3] and Mentor
Graphics® [4]) and EDA tools (e.g., MunEDA® [5], SOLIDO® [6],
Silvaco® [7] and AIDA [8]), the analog IC designers are gradually using
them in some steps of the manual design flow. Since the manual design
of analog circuits is a tedious and cumbersome task, the use of
foregoing tools definitely increases the productivity and the quality of
final designs and reduces the cost and the time-to-market. However,
designers only employ them as an intelligent assistant and not an
expert manager in the design process.

To the best of authors’ knowledge, one of the main reasons behind
the limited use of EDA tools by the IC designers is the high need for the
constant supervision of the designer in all phases of the design process
that makes the design flow time consuming. Moreover, the designer

may not be satisfied with the solution suggested by one of these EDA
tools because each tool provides a solution considering the trade-off
between three key factors of accuracy, robustness, and run time. Based
on the above reasons and due to the fact that there is no benchmark
circuit to compare the performance of EDA tools, no one can claim that
the solution provided by one of these tools is the best possible solution.

Improving the performance of the EDA tools for achieving a mature
solution in analog IC sizing has become an active research field during
the recent years, for instance, in [9–13]. However, there are many
challenges in this field. In this paper, we will address two of these
challenges that we are currently facing for analog circuit sizing [14]: 1)
the need for a more efficient constraint-handling technique and 2) the
need for a more powerful optimization kernel. In the following, these
two challenges are explained in detail.

Generally, the metaheuristic optimization algorithms (e.g., evolu-
tionary algorithms or swarm intelligent algorithms) are used in the
optimization kernel of circuit sizing tools. It should be noted that the
optimization kernel is actually a computational engine by which design
variables are updated in an iterative process until they achieve an
optimum equilibrium point [10]. Despite the fact that the analog circuit
sizing problems are highly constrained, the metaheuristic algorithms
are not inherently able to handle the constraints. Hence, to deal with
constrained problems, there is no alternative to equip optimization
algorithms with constraint handling techniques.

http://dx.doi.org/10.1016/j.vlsi.2017.06.003
Received 29 November 2016; Received in revised form 5 May 2017; Accepted 4 June 2017

⁎ Corresponding author.
E-mail address: maymandi@um.ac.ir (M. Maymandi-Nejad).

INTEGRATION the VLSI journal 59 (2017) 218–232

Available online 17 July 2017
0167-9260/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2017.06.003
http://dx.doi.org/10.1016/j.vlsi.2017.06.003
http://dx.doi.org/10.1016/j.vlsi.2017.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2017.06.003&domain=pdf

The static penalty function is the most widely used technique for
dealing with constrained optimization problems; this is due to its
simplicity and easy implementation that have made it as a relatively
reliable method [15]. For minimization problems, the penalty function
penalizes the infeasible solutions by adding a certain value to the
objective function as an amount proportional to the constraint viola-
tion. Thereby, this technique transforms the original constrained
optimization problem into an unconstrained one. The determination
of an appropriate penalty factor is quite problem dependent and thus it
is often a very difficult and time-consuming task. If a high value is
selected for the penalty factor, a premature convergence to a local
optimum may occur. In contrast, if a too small penalty factor is
selected, the search process may be led to outside the feasible region
resulting in infeasible solutions [16].

According to [16], most of the current circuit sizing methods
employ static penalty functions to handle the constraints. However,
since the static penalty function technique suffers from the sensitivity
of the penalty factors, it is not effective enough. Unfortunately, many
state-of-the-art constrained optimization methods have not been
introduced into the EDA tools yet, and hence, to address this challenge,
advanced constrained optimization methods need to be applied for
circuit sizing tools. On the other hand, according to the significant
advances in the IC manufacturing industry, the circuit specifications
have become more severe while circuit sizes have been highly scaled-
down. Therefore, another challenge to size high-performance analog
circuits with tough specifications is the necessity of having a sufficiently
powerful optimization kernel for EDA tools to handle more stringent
specifications in addition to enhancing the optimization ability [14]. By
far, different optimization kernels are provided for EDA tools, among
them, we can mention the kernels based on the following optimization
algorithms: a modified GA in [17], PSO in [18], ACO in [19], SA in
[20], GSA in [21], NSGA-II in [11], and NSGA-II, MOPSO and MOSA
in [10].

To cope with the first challenge, the constraint-handling techniques
based on the co-evolutionary model can be good alternatives. Since the
determination of proper penalty factors is a tough work, Coello [22], as
a pioneering work, introduced a self-adaptive penalty approach based
on the concept of co-evolution and incorporated it into a genetic
algorithm (GA) to solve constrained optimization problems. In this
approach, the optimal values of penalty factors are automatically
determined during the optimization process in which two populations
are generated in parallel in such a way that one population seeks to find
the feasible solutions while the second one adapts the associated
penalty factors. Likewise, a co-evolutionary particle swarm optimiza-
tion (CPSO) approach with some modifications on Coello’s co-evolution
model was presented by [23,24]. In these works, two interactive
swarms were evolved with PSO to simultaneously find the feasible
solutions and suitable penalty factors. In an analogous way with CPSO,
the differential evolution approach based on co-evolution model named
CDE was also introduced in [25]. Notably, however, all co-evolution-
ary-based approaches do not need to define any extra parameters in
optimal determination of the penalty factors except the initialization of
their associated optimization algorithms. This feature demonstrates the
merits of the co-evolutionary model as a self-tuning approach with the
least user intervention in the constraint-handling techniques.

To cope with the second challenge (i.e., the need for a more
powerful optimization kernel), a novel optimization algorithm named
advanced gravitational search algorithm (AGSA) [26] has been recom-
mended as a powerful kernel to enhance the performance of the
automated analog IC sizing tools. The main reason for this is that
according to the results provided by the pioneer reference [26], the
obvious capabilities of AGSA in the optimization of a set of standard
benchmark functions demonstrate that AGSA is a good choice to be
used as an optimization kernel in the circuit sizing tools. In fact, AGSA
is an upgraded version of gravitational search algorithm (GSA) based
on an innovative technique named shrinking circles. This technique

has been devised to balance the exploration and exploitation capabil-
ities when the optimization algorithm is converging to a possible
optimum point.

According to the solutions mentioned above, this paper proposes
the incorporation of the co-evolution model into the AGSA in order to
provide a powerful approach, which we call it Co-AGSA, in solving
constrained optimization problems. Moreover, the Co-AGSA approach
is used as the optimization kernel of an EDA tool to efficiently size
high-performance analog circuits.

The rest of this paper is organized as follows. Section 2 provides a
brief review of GSA and AGSA. In this section, the shrinking circles
technique and the way it can be incorporated into AGSA are also
explained. Section 3 describes the procedure of the proposed Co-AGSA
approach and presents a heuristic method for the reduction of
computational time. Section 4 evaluates the performance of Co-AGSA
in comparison with other methods by solving three realistic engineer-
ing problems. Section 5 introduces a novel circuit sizing tool based on
Co-AGSA and validates its performance using three different case
studies. Finally, Section 6 concludes the paper with some relevant
remarks.

2. Brief review of GSA and AGSA

2.1. Gravitational search algorithm

The GSA is one of the widely used algorithms of the swarm
intelligence family that is inspired by the Newton’s laws of gravity
and motion [27]. In the search space of GSA, there is a collection of N
agents (candidate solutions) in which each agent has a certain mass, so
that the performance of each agent is evaluated by the value of its own
fitness function. Moreover, each individual agent attracts every other
agents using the mutual gravitational force that is directly proportional
to the product of the corresponding mass values and inversely
proportional to the square of the distance between them. According
to the Newton’s law of universal gravitation, the force of gravity
moves all the agents towards the agent with heavier mass. Thus, by the
lapse of time, the heaviest mass attracts the other agents gradually until
the convergence criterion is met. In this case, the heaviest mass is
considered as the optimum solution. For the sake of clarity, the
optimization steps of GSA are outlined below.

• Step 1: Initialization
At the beginning of the algorithm, it is assumed that there are N

masses in the search space of the problem. The positions of the N
masses are initialized randomly as below:

X x x x fori N= (,…, ,…,) = 1, 2, …, .i i i
d

i
n1 (1)

where, xi
d represents the position of ith mass in the dth dimension.

• Step 2: Fitness evaluation
According to the objective function, the fitness values of all

masses at iteration t are calculated. Then, for a minimization
problem, the best and worst fitness values are defined as below:

best t fit t() = min ()
j N j∈{1,…, } (2)

worst t fit t() = max ()
j N j∈{1,…, } (3)

where, fitj(t) represents the fitness value of the mass i at iteration t.

• Step 3: Normalization
The normalized mass is calculated at iteration t by the following

equations:

m t
fit t worst t

best t worst t
() =

() − ()
() − ()i

i

(4)

M. Dehbashian, M. Maymandi-Nejad INTEGRATION the VLSI journal 59 (2017) 218–232

219

Download	English	Version:

https://daneshyari.com/en/article/4970702

Download	Persian	Version:

https://daneshyari.com/article/4970702

Daneshyari.com

https://daneshyari.com/en/article/4970702
https://daneshyari.com/article/4970702
https://daneshyari.com/

