EI SEVIED

Contents lists available at ScienceDirect

Microelectronic Engineering

journal homepage: www.elsevier.com/locate/mee

Research paper

Ultra-high thermal stability and extremely low D_{it} on HfO₂/p-GaAs(001) interface

H.W. Wan a, Y.H. Lin A, K.Y. Lin A, T.W. Chang A, R.F. Cai b, J. Kwo c,*, M. Hong a,*

- ^a Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- ^b Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 30013, Taiwan
- ^c Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

ARTICLE INFO

Article history: Received 27 February 2017 Received in revised form 9 May 2017 Accepted 12 May 2017 Available online 15 May 2017

Keywords:
Thermal stability
Interfacial trap density (D_{tt})
Molecular-beam-epitaxy (MBE)
HfO₂
GaAs
Metal-oxide-semiconductor capacitors
(MOSCAPs)

ABSTRACT

Molecular beam epitaxy (MBE) HfO₂ films ~1.5 nm thick were directly deposited on freshly grown GaAs(001)–4 × 6 reconstructed surfaces. The hetero-structure exhibits outstanding thermal stability up to 900 °C with excellent capacitance-voltage (C-V) and leakage current density-electric field (J-E) characteristics. We have extracted low interfacial trap densities (D_{tt} 's) with minimum value of 1.3×10^{11} eV $^{-1}$ cm $^{-2}$ from the measured quasi-static C-V (QSCV) characteristics. The smallest frequency dispersion of the C-Vs for the MBE-HfO₂/p-GaAs(001) is ~5.2% at frequency range of 500 to 1 MHz and no trap-induced humps were observed in the C-Vs, as measured at 100 °C and 150 °C. Also, the leakage current density remains low of 10^{-8} (A/cm 2) at E < \pm 3 (MV/cm). The key to passivate GaAs in attaining low D_{it} 's and high-temperature thermal stability is to ensure the cleanness of GaAs surface prior to the high- κ deposition.

© 2017 Published by Elsevier B.V.

1. Introduction

Pushing higher-speed and lower-power electronic devices requires the integration of high carrier mobility channels such as (In)GaAs to be an essential part of the ultimate CMOS circuits [1-3]. Si complementary metal-oxide-semiconductor (CMOS) since the 45 nm node has used high-K HfO₂-based gate dielectrics in scaling-down the capacitance effective thickness (CET) [4]. It is, therefore, very important to continue to employ HfO₂ in the new technology for integration with the present platform. A perfected SiO₂/Si interface exhibits thermal stability beyond 1100 °C and extreme low interfacial trap density (D_{it}) of $\sim\!10^{10} eV^{-1} cm^{-2}.$ The high- $\!\kappa$ and metal gate (HKMG) Si CMOS 14 nm node still employed a SiO₂ ~ 0.4 nm thick inserting between high-κ and Si as the passivation layer for tailoring interfacial property to attain a D_{it} of ~10¹¹eV⁻¹cm⁻². To fulfill the aggressive scaling of EOT < 1 nm, depositing HfO₂-based oxides directly on high mobility channels without a low-k interfacial layer is a must for future technology. To achieve the excellent interfacial properties approaching those at the SiO₂/Si interface, perfecting the high-k HfO₂/GaAs interfacial quality would be the main theme and a big challenge.

In fabricating GaAs inversion-channel MOS field-effect-transistors (MOSFETs) [5–8], there are two essential requirements: (I) a high-

E-mail addresses: raynien@phys.nthu.edu.tw (J. Kwo), mhong@phys.ntu.edu.tw (M. Hong).

quality oxide/GaAs interface with a low D_{it} and (II) high thermal stability beyond 900 °C for sufficient source/drain dopant activation. Note that an amorphous HfO₂ layer recrystallizes at ~600 °C, and forms a monoclinic phase with four domains causing leakage paths, inadequate for the gate stack applications [9].

Several attempts on inserting interfacial passivation layers (IPLs) such as Si [10,11] and Ge [12] between HfO₂ and GaAs yielded a D_{it} < 10^{12} eV $^{-1}$ cm $^{-2}$ have been reported, but the thermal stability was poor with temperatures higher than 700 °C. In great contrast, atomic-layer-deposited (ALD) [13] Y₂O₃ *in-situ* directly on GaAs(001) has shown effective passivation with high temperature thermal stability to 900 °C, which enables the possibility of fabricating GaAs MOSFETs by the gate-first approaches.

In this work, amorphous HfO_2 1.5 nm thick was directly e-beam evaporated on freshly grown GaAs(001). For the first time, without any IPLs, the $HfO_2/GaAs(001)$ interface remains intact after 900 °C rapid thermal annealing (RTA). The frequency dispersion of the capacitance-voltage (C-V) characteristics for MBE- HfO_2/p -GaAs(001) is 1.56% per decade, lowest ever achieved in $HfO_2/GaAs$ hetero-structures. Moreover, we have extracted a low D_{it} of 1.3 \times 10¹¹ eV⁻¹ cm⁻² using the quasi-static CV (QSCV) measurement.

2. Experimental

In our multi-chamber UHV system [14], p-GaAs epi-layers doped with Be were grown on p-GaAs(001) wafers in a solid-source GaAs-

^{*} Corresponding authors.

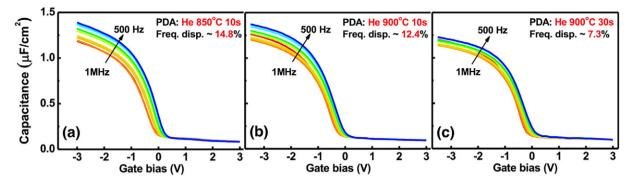
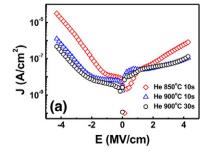
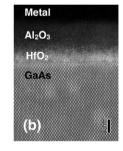


Fig. 1. The capacitance-voltage (C-Vs) characteristics measured from 1 MHz to 500 Hz under post deposition annealing conditions of (a) 850 °C 10s, (b) 900 °C 10s, and (c) 900 °C 30s.

based MBE chamber. The samples were then *in-situ* transferred under $\sim 10^{-10}$ Torr to an As-free oxide-MBE chamber for attaining a 4×6 reconstructed surface by annealing the samples to ~560 °C. The substrate temperature was lowered to ~120 °C for the oxide deposition to prevent the recrystallization of HfO2 during deposition. HfO2 1.5 nm thick was e-beam evaporated directly onto GaAs(001), followed by of e-beam evaporated Al₂O₃ 5 nm thick as a cap. We then removed the samples from the UHV system to fabricate MOS capacitors (MOSCAPs). The samples were firstly post deposition annealed (PDA) at 550 °C in N₂ ambient for 20 min to improve oxide film quality and subsequently rapid-thermal-annealed (RTA) to 850-900 °C under different durations to examine the interfacial thermal stability. Ni 100 nm thick was e-beam evaporated as circular gate electrodes through a shadow mask with a diameter of 100 µm and Ti/Au were deposited as back ohmic contact. To further improve the interfacial quality, the samples were post metallization annealed (PMA) in forming gas (H₂ 15%/N₂ 85%) at 400 °C for duration of 5 min. C-V characteristics were measured at room temperature in dark by Agilent 4284A Precision LCR meter, and J-E and QSCV characteristics were measured by using Agilent 4156C Precision Semiconductor Parameter Analyzer. Moreover, we have also performed C-V measurements at elevated temperatures of 100 °C and 150 °C in dark by using Agilent E4980A Precision LCR meter.


3. Results and discussion


One critical issue in attaining high-performance GaAs(001) inversion-channel MOSFETs is to reduce the S/D contact resistivity. Besides lowering the Schottky barrier height, it is essential to fully activate the implanted dopants; this means that high temperature annealing above 900 °C is required. However, in oxides/GaAs(001) hetero-structures, thermal stability above 800 °C is rarely reported, except our earlier work of Ga₂O₃(Gd₂O₃) on GaAs [15] and In_{0.2}Ga_{0.8}As [16]. Recently, we reported trivalent Y₂O₃ deposited by ALD and MBE on passivating GaAs(001), with both achieving high thermal stability of ~900 °C and $D_{it} < 10^{12} \text{ eV}^{-1} \text{ cm}^{-2}$ [17–19]. To integrate the current HfO₂-based HKMG technology on GaAs is of no less importance for the future GaAs MOSFETs. Hence, the first step is to examine the thermal stability of the MBE-HfO₂/GaAs(001) hetero-structures. Note that we firstly grew pristine GaAs epi-layer free of native oxides to ensure the surface cleanness prior to the high-k deposition, which is very important for (In)GaAs passivation.

We had carried out synchrotron radiation X-ray diffraction studies on MBE-HfO $_2$ on GaAs(001) and found that single crystal 5–6 nm thick MBE-HfO $_2$ was epitaxially grown on GaAs(001) in a monoclinic phase with excellent crystallinity [9]. However, the HfO $_2$ forms four domains, which surely cause leakage paths, inadequate for MOS application. Therefore, in this work, we deposited HfO $_2$ in a thickness of ~1.5–2 nm to just cover the whole GaAs surface but thin enough to prevent undesirable formation of multi-domains during anneals above 600 °C.

Fig. 1 shows the C-Vs of Ni/MBE-HfO₂/p-GaAs(001) MOSCAPs under different PDA conditions, measured at 500 Hz-1 MHz at room temperature. As shown in Fig. 1(a) and (b), when the annealing temperature raised from 850 °C to 900 °C, the frequency dispersion in accumulation region decreased from 14.8% to 12.4%. Moreover, the frequency dispersion was greatly reduced to 7.3% when the annealing time was extended from 10s to 30s, as shown in Fig. 1(c). These results suggest that our HfO₂/GaAs(001) interface possesses high thermal stability to 900 °C, the highest among all of the reported HfO₂/GaAs systems. Fig. 2(a) shows the characteristics of leakage current density with respect to electric field (*I-E*) for the MOSCAPs, the leakage current density remains as low as ~ 10^{-8}A/cm^2 at E \leq \pm 3 (MV/cm), suggesting that the interface remains intact even after 900 °C annealing with duration time of 30s. From the cross-sectional scanning transmission electron microscopy (STEM) image on a 900 °C annealed MBE-HfO₂ on GaAs(001) shown in Fig. 2(b) it follows that the interface between the thin HfO₂ and GaAs remains atomically sharp. This also explains the low leakage current density in Fig. 2(a). The samples were subsequently undergone post metallization annealing (PMA) in forming gas (FG) at 400 °C for 5 min to improve the interfacial quality. This resulted in further reduction of the frequency dispersion down to 5.2%. Along with a sharp transition from accumulation to depletion, recognizable in C-V curves, this indicates that D_{it} is low under the mid-gap.

To investigate the D_{it} values around the mid-gap region, we measured the C-Vs at higher temperatures of 100 °C and 150 °C, as shown in Fig. 3(b) and (c). At 100 °C, the frequency dispersion became slightly larger, but the transitions of the C-V curves were still sharp, suggesting that the D_{it} is still maintained at a low value. But at 150 °C, the frequency-dependent flat-band shifts toward positive bias region were observed, indicating the existence of more traps distributed at the midgap, as more positive bias was needed to create the same amount of band-bending. However, unlike the inversion-like humps measured in the previously reported C-Vs of ALD- and molecular-beam-deposited (MBD)-Al₂O₃/GaAs at 150 °C [20,21], such mid-gap effects were not observed by measurements performed at elevated temperatures for MBE-HfO₂/p-GaAs(001) MOSCAPs.

Fig. 2. (a) *J-E* characteristics of MBE-Al₂O₃/MBE-HfO₂/p-GaAs(001) MOSCAPs and (b)Cross-sectional HR-TEM image of MBE-Al₂O₃/MBE-HfO₂/GaAs(001).

Download English Version:

https://daneshyari.com/en/article/4970835

Download Persian Version:

https://daneshyari.com/article/4970835

Daneshyari.com