Accepted Manuscript

Lithography-free microfabrication of AlGaN/GaN 2DEG strain sensors using laser ablation and direct wire bonding

Karen M. Dowling, Hongyun So, Anju Toor, Caitlin A. Chapin, Debbie G. Senesky

PII: S0167-9317(17)30125-9

DOI: doi: 10.1016/j.mee.2017.03.012

Reference: MEE 10502

To appear in: Microelectronic Engineering

Received date: 19 February 2017 Accepted date: 27 March 2017

Please cite this article as: Karen M. Dowling, Hongyun So, Anju Toor, Caitlin A. Chapin, Debbie G. Senesky, Lithography-free microfabrication of AlGaN/GaN 2DEG strain sensors using laser ablation and direct wire bonding. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Mee(2017), doi: 10.1016/j.mee.2017.03.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Lithography-free microfabrication of AlGaN/GaN 2DEG strain sensors using laser ablation and direct wire bonding

Karen M. Dowling¹, Hongyun So^{2,a)} Anju Toor³, Caitlin A. Chapin⁴, and Debbie G. Senesky^{1,2}

¹Department of Electrical Engineering and ²Aeronautics and Astronautics, Stanford University, Stanford, CA 94305,

United States

³Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States

⁴Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States

Abstract

This work presents a simple and rapid lithography-free (i.e., maskless) microfabrication process for strain-sensitive aluminum gallium nitride (AlGaN)/GaN sensors. We microfabricated an AlGaN/GaN strain sensor through laser ablation of the underlying Si (111) substrate and direct bonding of aluminum wires to the AlGaN surface, creating a Schottky contact to the two-dimensional electron gas (2DEG). We measured the sensor's current-voltage operation while displacing the center of the membrane up to 106.7 μm and characterized its sensitivity at from 0.5 to 2 V bias (i.e., 5 to 100 nA/μm). This work advances the development of AlGaN/GaN-on-Si microelectronics (e.g., pressure sensors, accelerometers, and gyroscopes) using the simplified fabrication process, which eliminates lithography, metallization, and etching, and reduces the manufacturing time (5 min) and cost, as well as the need for cleanroom environments.

Keywords: Gallium nitride, Microfabrication, Strain sensor, Laser ablation, Direct wire bonding

a) Author to whom correspondence should be addressed. E-mail: hyso@stanford.edu.

Download English Version:

https://daneshyari.com/en/article/4970989

Download Persian Version:

https://daneshyari.com/article/4970989

<u>Daneshyari.com</u>