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A B S T R A C T

A modeling approach, based on an analytical solution of the semiclassical multi-subband Boltzmann trans-
port equation, is presented to study resistivity scaling in metallic thin films and nanowires due to grain
boundary and surface roughness scattering. While taking into account the detailed statistical properties
of grains, roughness and barrier material as well as the metallic band structure and quantum mechanical
aspects of scattering and confinement, the model does not rely on phenomenological fitting parameters.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The resistivity of metallic thin films and nanowires increases
drastically when the film thickness or wire diameter is reduced [1].
An increased resistivity is undesirable for typical applications of
these structures, e.g. interconnects in semiconductor devices, as it
leads to increased heating, power dissipation, signal propagation
delays, etc. Hence, in order to assess the performance of metallic thin
films and nanowires as conductors in nanoscaled applications, it is
important to study their resistivity and scaling behavior and under-
stand how a drastic increase of resistivity can be prevented, if at all
possible for metallic structures with sub-10 nm dimensions.

Experimental data has indicated that the increase of resistivity
is mainly induced by an increase of electron scattering at the grain
boundaries and near the rough boundaries of the structure. These
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scattering mechanisms lead to a resistivity contribution that adds to
the bulk resistivity dominated by the electron-phonon interaction
and scattering with lattice imperfections which is, to a good approxi-
mation, independent of the thickness. The resistivity data of metallic
thin films and wires is in good agreement with the semiclassi-
cal Mayadas-Shatzkes model, commonly used for data comparison
and predicting a resistivity scaling almost inversely proportional
to the film width or wire diameter [1,2]. While the Mayadas-
Shatzkes model provides satisfactory fits to the data, it contains
phenomenological fitting parameters: a specularity parameter for
boundary surface scattering and a reflection coefficient for grain
boundary scattering. These parameters do not provide a clear con-
nection between the microscopic scattering events and the resulting,
measured resistivity of the thin film or nanowire. For example, there
is no clear relation between boundary roughness, the microscopic
origin of diffusive scattering at the boundary, and the phenomeno-
logical specularity parameter in the Mayadas-Shatzkes model which
intends to capture this process. Moreover, the Mayadas-Shatzkes
model neglects the material band structure properties and quan-
tum mechanical aspects of scattering and confinement while a priori
there is no reason to expect that both aspects have negligible impact
on the resistivity scaling behavior.
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We present an alternative approach to model resistivity scaling in
metallic thin films and nanowires, based on the multi-subband Boltz-
mann transport equation, with averaged scattering rates obtained
from Fermi’s golden rule for grain boundary and surface roughness
scattering [3,4]. Our approach allows to perform a rigorous analysis
of the resistivity and its scaling behavior while taking into account
the aforementioned aspects that are neglected in some conventional
approaches.

In Section 2 we summarize briefly the theory of the semiclas-
sical multi-subband Boltzmann equation and the scattering rates
obtained with Fermi’s golden rule for grain boundary and surface
roughness scattering. Next, we present some simulation results in
Section 3, which are discussed in Section 4, followed by a con-
clusion in Section 5. We also refer to some articles with similar
developments for metallic thin films and nanowires [5–7].

2. Theory

The electron (or hole) transport formalism based on the semiclas-
sical multi-subband Boltzmann transport equation can be summa-
rized by the following list of equations:
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where dfn is the deviation of the distribution function from Fermi-
Dirac equilibrium (dfn(k) ≡ fn(k) − f FD

n (k)) for the (sub)band labeled
by n, En(k) and tn(k) are respectively the energy and relaxation time
for a state with wavevector k (and k the component along the direc-
tion of the electric field) in (sub)band n, q is the electron charge,
E the electric field, EF the Fermi energy, V the scattering potential
and J the current density. The dimensionality of n and k depends
on the system under consideration. The wavevectors k are one-
dimensional (D = 1) for nanowires and two-dimensional (D = 2)
for thin films, while n is a two-dimensional subband index vector
for two-dimensional nanowire confinement and one-dimensional
for thin film confinement (including an extra band index in both
cases if required). The list of equations follows from the solution
of the linearized Boltzmann equation at zero temperature [8]. The
linearization and zero temperature assumption are justified in the
case of small electric fields, elastic scattering and low enough tem-
peratures (kBT � EF, with EF measured from the lowest conduction
band) and these are very reasonable assumptions for typical metal-
lic nanowires and thin films at room temperature with electrons
predominantly subjected to grain boundary and surface roughness
scattering. All the states |n(′)k(′)〉 that are considered in Eqs. (1)–(4)
are therefore Fermi level states with En(k) = En′ (k′) = EF.

The relaxation times in Eq. (2) are coupled self-consistently
through a system of linear equations and can be obtained through
a matrix (of finite size for a nanowire while requiring numerical
discretization of k for thin films) inversion. Fermi’s golden rule is
invoked to obtain the scattering rates between the different elec-
tron states due to grain boundary and boundary surface roughness
scattering. These scattering rates are averaged over an ensemble of
grain boundaries and surface roughness profiles to retrieve a gen-
eral and analytical expression which can be inserted into Eq. (3),
allowing for fast and accurate simulations. Because electron-phonon
and imperfection (e.g. point defects or impurities) scattering in thin

films and nanowires do not deviate much from their bulk scattering
behavior while being isotropic and independent from grain boundary
and surface roughness scattering (Matthiessen’s rule), their resis-
tivity contribution is very close to the bulk value, qbulk, and can
be separated from the scaling part due to grain boundaries and
surface roughness, qscaling. This consideration leads to a total resis-
tivity qbulk + qscaling, with qbulk the bulk resistivity extracted from
experiments and qscaling resulting from the solution of Eqs. (1)–(4).

The input which is required to solve Eqs. (1)–(4) consists of a cor-
rect band structure profile of the nanowire or thin film, to be used
in Eqs. (1)–(3), the wave functions of the electron states close to
the Fermi level and expressions for the grain boundary and surface
roughness potentials, entering the matrix elements in Eq. (4). The
set of equations has no remaining free fitting parameters and the
resistivity can be obtained without numerical integration.

For grain boundaries, we have borrowed the scattering potential
and its distribution from the Mayadas-Shatzkes model [2]:
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where the grain boundaries are represented by N Dirac delta barrier
planes normal to the transport (z) direction at positions za , the
barrier strength SGB being distributed along the wire with an average
distance DGB in between subsequent grain boundaries and stan-
dard deviation sGB. The average distance and standard deviation
can be estimated from the experimental grain distribution while the
barrier strength (having units of energy times length), representing
the height and width of the grain boundary potential barrier, can
be extracted from ab initio simulations. It typically depends on the
orientation of the grains and their boundaries, but gives values of
the order of magnitude of eV • Å. The normal orientation of the grain
boundary planes in the Mayadas-Shatzkes model can be extended to
random orientations but the deviations in resistivity from the results
of grain boundaries with normal orientation are quite small [9].

For surface roughness, we consider the following potential and
statistics, based on Ando’s surface roughness scattering model [10]:

VSR(r) = U (x − D(R), y, z) − U (r) , (7)

〈
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〉
= 0,

〈
D(R)D(R′)

〉
= D2e−(R−R′)2/(K2/2), (8)

where r ≡ (x, y, z) and we assume a roughness function D(R) with
R ≡ (y, z) that shifts the potential U(r) along a confinement (x) direc-
tion as a function of the boundary position R with zero average,
standard deviation (or RMS) D and correlation length K . The matrix
element is linear in V but not linear in D. One often expands the
matrix element linearly in the roughness function in combination
with considering an infinite potential well for U(r), leading to the
so called Prange-Nee approximation for surface roughness scatter-
ing [11]. This approximation neglects the oscillatory behavior of the
wave functions and can lead to large errors on the scattering rates.
We have recently introduced an analytical expression for the matrix
elements going beyond the linear expansion restriction as well as
the infinite potential well limit, hence avoiding additional approxi-
mations such as the commonly used Prange-Nee approximation [4].
In this way, the potential barrier outside the wire or film can also
be adjusted to represent the surrounding barrier material accurately,
improving once again the accuracy of the simulations. While the
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