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ABSTRACT

Pixel-based optical proximity correction (PBOPC) is currently a key resolution enhancement technique to
push the resolution limit of optical lithography. However, the increasing scale, density and complexity of
modern integrated circuits pose new challenges to both of the OPC computational intensity and mask manu-
facturability. This paper aims at developing a practical OPC algorithm based on a machine learning technique
to effectively reduce the PBOPC runtime and mask complexity. We first divide the target layout into small
regions around corners and edge fragments. Using a nonparametric kernel regression technique, these
small regions are then filled in by the weighted linear combination of a subset of training OPC examples
selected from the pre-calculated libraries. To keep balance between the image fidelity and mask complex-
ity, we use an edge-based OPC (EBOPC) library to synthesize the OPC patterns in non-critical areas, while
use another PBOPC library for hotspots. In addition, a post-processing method is developed to refine the
regressed OPC pattern so as to guarantee the final image fidelity and mask manufacturability. Experimental
results show that, compared to a currently professional PBOPC software, the proposed algorithm can achieve

approximately two-fold speedup and more manufacture-friendly OPC patterns.

© 2016 Published by Elsevier B.V.

1. Introduction

The electronics industry has relied on resolution enhancement
techniques (RET) to enhance the imaging performance of optical
lithography systems [1-4]. As one of key RETs, optical proximity
correction (OPC) method pre-warps the masks to compensate for
imaging distortions as the target patterns are replicated onto semi-
conductor wafers. In general, OPC approaches can be classified into
rule-based OPC and model-based OPC [2]. Rule-based OPC is mostly
heuristic and simple to implement, but not competent for the tech-
nology nodes beyond 90 nm. In contrast, model-based OPC uses
physical or mathematical models to formulate the OPC framework
and seeks the global optimal solution, which may further push the
lithographic resolution limit. Model-based OPC approaches include
edge-based OPC (EBOPC) and pixel-based OPC (PBOPC). EBOPC
decomposes the edges of mask into segments and gradually nudges
them to find the optimal locations, whereas PBOPC grids the mask
into small pixels and optimizes their transmission coefficients [2].
Although EBOPC usually obtains much simpler mask patterns than
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PBOPC, it may not be very suitable for 45 nm and smaller nodes due
to the lack of degrees of optimization freedom [5,6]. On the other
hand, PBOPC overcomes this drawback, and may result in higher
image fidelity on the wafer. Consequently, a set of PBOPC approaches
have been proposed for advanced optical lithography to enhance the
imaging performance at nominal settings [7-15] or over a range of
process variations [16-22].

In general, model-based OPC needs to process a mass of data
and carry out time-consuming calculations, especially for the current
sophisticated large scale layout. To alleviate this problem, different
machine learning techniques were applied to effectively accelerate
the OPC design process [23-25]. In the past, Gu, Zakhor and Gao
used linear regression and principle component regression methods
to estimate the movement directions of edge and corner fragments,
and effectively reduced the iterations required for the EBOPC algo-
rithms [26,27]. By treating all mask pixels as optimization variables,
PBOPC approaches introduce new challenges to both computational
efficiency and mask manufacturability. Consequently, Luo proposed
a fast PBOPC method using the multilayer perceptron neural net-
work [28]. Luo and Shi, et. al. developed a support vector machine
(SVM) based layout retargeting method to promote the convergence
speed of PBOPC optimization process [29]. Recently, Ma and Li,
et al. proposed a fast PBOPC method based on nonparametric kernel
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regression to effectively speedup the iterative PBOPC flow on 90 nm
and 45 nm Metal layers [30]. However, how to further improve the
mask manufacturability in this method still needs to be investigated,
which is a key point to be concerned in advanced lithography tech-
nology nodes. In addition, the impact of parameter selection on the
algorithm performance needs further study, and this method is yet
to be proven by more dense layout, such as poly layer mask pattern.

In order to overcome the limitations of the prior work in [30], this
paper focuses on developing a fast and manufacture-friendly OPC
approach based on nonparametric kernel regression to effectively
speedup the currently professional PBOPC software and ameliorate
the mask manufacturability. The professional software used in this
paper is Calibre [31]. The Calibre nmOPC package and Calibre pxOPC
package provide the functions to calculate EBOPC and PBOPC. Here-
after, the Calibre nmOPC and Calibre pxOPC are referred to as the
“EBOPC software” and “PBOPC software”, respectively. In practice,
any other OPC approaches or software could be applied. The basic
idea of this paper is to rapidly synthesize a raw OPC pattern based on
the pre-calculated EBOPC and PBOPC libraries to effectively acceler-
ate the OPC optimization process. In addition, the proposed method
takes the advantages of both EBOPC and PBOPC methods to keep
balance between the imaging performance and mask complexity.
The flowchart of the proposed method is shown in Fig. 1. We first
use the professional software to calculate the EBOPC and PBOPC
results of a training layout. Based on these results, the EBOPC and
PBOPC libraries are built up to provide apriori-knowledge for the
following regression process. Subsequently, the test layout to be
optimized is divided into three kinds of regions: convex corners,
concave corners and edge fragments. These regions are then filled
in by the pre-calculated OPC pieces selected from the two libraries
via using the nonparametric kernel regression technique. Particu-
larly, we use the EBOPC library for the non-critical areas that only
need simple mask corrections. On the other hand, we use the PBOPC
library for the hotspots, where careful mask corrections and addi-
tional sub-resolution assist features (SRAF) are required. By properly
applying different degrees of mask corrections according to the local
characteristics of mask features, we are able to get preferable mask
manufacturability than merely using PBOPC method. Finally, a post-
processing method is proposed to refine the regressed OPC pattern
so as to guarantee the image fidelity on wafer and mask manufac-
turability. Following sections will describe each step of the flowchart
in detail. The proposed algorithm is tested using a Metal layer and
another Poly layer at 45 nm technology node. Simulations show
that, compared to the PBOPC software, the proposed method can
achieve approximately two-fold speedup and more manufacture-
friendly OPC pattern. At the end of this paper, we investigate and
analyze the influence of two key parameters on the algorithm per-
formance. One parameter is the number of candidates chosen from
libraries to synthesize each OPC piece, and the other is the threshold
value used to switch between EBOPC and PBOPC libraries. Different
from this paper, our prior work in [30] was based on PBOPC libraries
only, the impact of key parameter values has not been studied, and
the algorithm has not been tested on the Poly layers yet.

The remainder of this paper is organized as follows: The
nonparametric kernel regression technique is briefly discussed in
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Fig. 1. Flowchart of the proposed OPC approach.
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Section 2. The method to construct the OPC libraries is described in
Section 3. The fast and manufacture-friendly OPC algorithm based
on nonparametric kernel regression is developed in Section 4. Sim-
ulations and discussions are presented in Section 5. Conclusions are
provided in Section 6.

2. Nonparametric kernel regression

Suppose there are twosets of data X and y having the following
relationship y = f (x) + ¢ where f(-) is an arbitrary function, and
¢ is an error vector. Nonparametric regression is a statistical tech-
nique, which models the dependence of the output y on the input
features x. Nonparametric regression methods are suitable to model
general nonlinear patterns hidden in a high-dimensional data space,
where f(-) is assumed to be a continuous function with unknown
form [32,33]. On the other hand, OPC synthesis is an ill-posed nonlin-
ear problem in high-dimensional data space, where all mask pixels
or edge segment locations can be treated as optimization variables.
Thus, the nonparametric regression technique is suitable to solve for
the OPC problem.

A variety of nonparametric regression approaches have been
investigated in literature [34,35]. In this paper, we adopt the
kernel-based nonparametric regression method in our algorithm.
The Nadaraya-Watson kernel regression method was independently
developed by Nadaraya and Watson, which takes the general
form [36,37]
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where x; and y; are the input and output training data at hand, X¢ and
Y are the input and output test data, y, is the estimate of y;, N is a
tunable parameter representing the candidate number selected from
the training data set, and K (?ct,?(,-) is the kernel function. The kernel
function K (x;,x;) measures the similarity between the observations
at x; and a given location x¢, and weights each y; to predict y; [34]. In
this paper, we choose the Gaussian kernel
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where h is the bandwidth to control the smoothing range. The under-
lying rationale of applying nonparametric kernel regression to OPC
problem is that the similar local features on target pattern likely
correspond to similar OPC solutions. Thus, we can approximate the
OPC solution of test layout by weighted averaging several training
OPC examples corresponding to the target patterns that resemble the
test layout. Particularly, in the OPC problem x; represents the vector
of the sampling points around a certain mask feature on the training
layout, y; is the optimized OPC pattern corresponding to x;. A mass of
(x;,y;) combinations are precalculated and saved in the OPC libraries.
Given a test layout to be optimized, X; represents the vector of sam-
pling points around a mask feature on the test layout, and y, is the
regressed OPC pattern corresponding to X;. According to Eq. (1), N
candidates are selected from the libraries that have the smallest dis-
tance of |[x; — X; ||§ among all training data. The construction method
of the OPC libraries is described in the next section.
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3. Construction of OPC libraries
3.1. Collection of input training data
The input training data x; in Eq. (1) represents the local geometry

characteristic of the underlying mask pattern. In this paper, we use
a Metal layer and another Poly layer at 45 nm technology node to



Download English Version:

https://daneshyari.com/en/article/4971099

Download Persian Version:

https://daneshyari.com/article/4971099

Daneshyari.com


https://daneshyari.com/en/article/4971099
https://daneshyari.com/article/4971099
https://daneshyari.com

