
Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

An efficient hardware architecture of CAVLC encoder based on stream
processing

Milica Orlandić⁎, Kjetil Svarstad
Department of Electronic Systems NTNU - Norwegian University of Science and Technology Trondheim, Norway

A R T I C L E I N F O

Keywords:
H.264/AVC
Entropy encoding
CAVLC
FPGA
Bitstream packing
Hardware implementation.

A B S T R A C T

The paper presents an efficient implementation of Context-Adaptive Variable Length Coding (CAVLC) entropy
encoder in H.264/AVC standard. The architecture is designed with a parallel structure targeting real-time video
compression. The intensive memory access demand in the syntax element coding stage is lowered by using the
proposed arithmetic table elimination technique. The packing stage implementation is interleaved with syntax
element generation stage and includes fast methods for syntax elements concatenation. The register update
method performs concatenation of the bitstream of previously processed sub-blocks and the syntax codewords of
the currently processed sub-block. The CAVLC encoder processes 4 × 4 sub-block coefficients in parallel, in-
troducing the initial latency of 12 clock cycles, after which the full pipeline of the data encoding on the sub-block
level is performed, and 16 residuals are processed at each clock cycle. The achieved high throughput allows the
encoding core to perform real-time processing of 8 K UHD (4320 p) video sequences with a frame rate of 30
frames/s.

1. Introduction

Video compression is an intensive-computational application in-
volving several stages such as transform coding, prediction algorithms
and entropy coding. After the video sequence is compressed to a series
of residuals in the prediction and transform stages, entropy encoding
uses the statistical properties to compress data. The number of bits
produced by entropy encoders is logarithmically proportional to the
probability of the data. Entropy encoders are of serial nature due to
data dependencies between the encoding elements, and achieving high
throughput of entropy coding process represents a challenge nowadays.
Existing video players, despite great efforts, cannot provide support for
high bitrates dictated by increasing resolutions, and the design of high
performance entropy encoder architectures on dedicated parallel
hardware represents a solution.

The various types of information produced in the encoder stages,
such as residuals from transform coding stage or mode flags from pre-
diction stage, are referred as the syntax elements. In the H.264/AVC
standard [1] a number of entropy encoding techniques are defined for
different types of syntax elements and video standard profiles. De-
pending on the profile, residual encoding can be performed by Context-
Adaptive Variable Length Coding (CAVLC) [2] and Context-Based
Adaptive Binary Arithmetic Coding (CABAC) [3]. CABAC achieves bi-
trate savings when compared to CAVLC, but its higher complexity

meets challenges in achieving efficient execution for high bitrate video
content. Based on compression-complexity tradeoff compared to C-
ABAC, CAVLC is deployed in the Baseline and Extended profile of
H.264/AVC.

A number of hardware designs for CAVLC have been proposed in
order to meet the high throughput requirements of high- definition
coding. Recent works on CAVLC FPGA implementations [4–8] and ASIC
designs [9–12] are reported in literature. Moon et al. [4] propose a
solution for decoding Run_before codeword in video length decoding
(VLD) without the look-up tables. Lo et al. [5] combine two entropy
decoding methods in H.264/AVC standard in the shared implementa-
tion. The shared components between CABAC and CAVLC are context
adaptation module, input and line buffers, whereas level computation
in CAVLC level decoder and CABAC inverse binarization and look-up
tables for other phases of entropy encoding within both standards are
not adapted and merged into the common component. Ramos et al. [6]
propose an implementation characterized by 2-pixel input parallelism,
and the focus is on the speed up of syntax element encoding, in parti-
cular Levels encoding stage. Licciardo et al. [7] focus on minimizing
area cost by using an arithmetic table elimination technique, however
the operating frequency is the limiting factor for high definition content
real-time processing. Hoffman et al. [8] present an implementation for
surveillance applications with high frame rate characterized by a
modified dual-coefficient scanning method. The level information and

http://dx.doi.org/10.1016/j.mejo.2017.07.013
Received 2 March 2017; Received in revised form 30 May 2017; Accepted 24 July 2017

⁎ Corresponding author.
E-mail address: milica.orlandic@ntnu.no (M. Orlandić).

Microelectronics Journal 67 (2017) 43–49

0026-2692/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00262692
http://www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2017.07.013
http://dx.doi.org/10.1016/j.mejo.2017.07.013
mailto:milica.orlandic@ntnu.no
http://dx.doi.org/10.1016/j.mejo.2017.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2017.07.013&domain=pdf

the number of zeros which run before each non-zero are determined
during the scanning phase in order to reduce the number of clock cy-
cles. Hsia et al. [11] propose a direct forward algorithm instead of
backward tracking.

The paper is structured as follows: Section 2 presents details of C-
AVLC, and in particular, suggested adaptations of computationally and
resource demanding phases. The details of implementation of both
encoding and packing phases are presented in Section 3. The overall
supporting SoC architecture for testing, logic utilization and perfor-
mance analysis are presented in Section 4. Finally, the conclusions are
given in Section 5.

2. CAVLC encoding in H.264/AVC standard

Entropy coders in video compression standards convert a series of
elements of video sequence such as transform coefficients, headers or
motion vectors into bitstream suitable for transmission or storage. The
CAVLC coding is based on the common Variable Length Coding (VLC)
method which defines a codebook by assigning a code to each symbol.
Average size of each coded symbol can be minimised by assigning
shorter codes to the frequent symbols. A variation of VLC which in-
troduces context-based adaptivity is defined in H.264/AVC standard.
Context-based adaptivity introduces strong inter-symbol dependency
and limits the use of parallelism in the encoder implementation. The
data dependency exists among the coefficients on the 4×4 level, but
also within the neighboring sub-blocks. The relationship between an
actively encoded block and previously coded blocks is defined based on
current block statistics. The CAVLC encoding process is partitioned into
three phases: pre-processing including block scan and generation of
flags and parameters, syntax element encoding and bitstream forma-
tion.

After the transform and the quantization stages, high-frequency
regions typically contain coefficients with low values, whereas the le-
vels of non-zero coefficients tend to be larger towards the low-fre-
quency region. The zig-zag scan order proposed by the standard tends
to group significant coefficients around DC coefficient as presented in
Fig. 1. The coding parameters are extracted by backward tracking from
the vector of coefficients obtained by zig-zag reordering.

The five syntax element codewords are defined by the standard as
follows:

• CoefToken- Encoding of the number of total coefficients TotalCoef
and the number of high-frequency +/- coefficients also called
'Trailing 1s' (NR_T1),

• Sign- Encoding of the sign of each NR_T1, where signs of NR_T1
elements are coded with a single bit in reverse order from the
highest frequency in NR_T1, and the length of Sign codeword is
NR_T1.

• Levels- Encoding of the levels of the remaining non-zero
coefficients.Levels are values of non-zero coefficients. Encoding of

this phase is context-adaptive since the successive level coding depends
on the magnitude of the previously coded level.

• TotalZeros- Encoding of the total number of zeros before the last
coefficient.

Total number of zeros, TotalZeros, is the sum of zeros preceding the
highest non-zero coefficient in the scan order array.

• Run _ before- Encoding runs of zeros, where the codeword is de-
termined by the number of zeros in between two consecutive non-
zero coefficient together with the number of remaining zeros in the
vector.

Parameter TotalCoef can take values in a range −[0 16], whereas
NR_T1 is in the range −[0 3]. Standard defines that if there are more
than three trailing values, only last three are considered as NR_T1, and
the other coefficients are coded as normal coefficients. From the im-
plementation viewpoint, CoefToken is obtained from 2D variable-length
code tables inherited from variable length coding in MPEG-2 based on
the number of non-zero coefficients and on the number of trailing
coefficients. There are four context-dependent NUM_VLCx look-up ta-
bles for CoefToken codeword generation for Luma components (three
variable-length code tables and one fixed-length code table). The choice
of a table is determined by statistics of the neighboring blocks and
depends on a number of non-zero elements in the left and upper coded
blocks.

The vector Levels is built as follows:

⏟= ⋯ ⋯Code x xs[0 0 1],Levels p length s length (1)

where s is the sign of the coefficients in the vector Levels. The string of
zeros followed by a stop bit ‘1′ is Prefix, whereas the sequence of bits
following the stop bit is Suffix and the sign of the coefficient. The
number of bits for Prefix and Suffix are given by parameters p_length
and s_length. There are defined seven tables Lev_VLCx for coding levels
syntax elements selected by an update step specified by parameter N
and threshold values defined for each table.

The TotalZeros parameter counts the number of zeros in
between the first non-zero coefficient and last non-zero coefficient.
Depending on parameters TotalCoef and TotalZeros parameters,
TotalZeros codeword is encoded using TZ_VLC look-up table - TZ

+TotalCoef TotalZerosVLC(, 1).
The final codeword sequence, Run_before, is derived from a look-up

table + Run i ZerosparRBVLC(1 (),), where the parameters Run and
Zerospar are the number of zeros between each non-zero coefficient,
and the number of embedded zeros yet to be encoded until the last non-
zero element, respectively.

3. Implementation of the CAVLC entropy encoder

The block diagram of the proposed CAVLC encoding system archi-
tecture is given in Fig. 2. The zig-zag reorder scan module receives
sixteen coefficients corresponding to the 4 × 4 quantized residual sub-
block as inputs and performs coefficient reordering within one clock
cycle. A number of flags required for the encoding process of the syntax
elements are generated:

• Flag Nonzero - Non-zero elements,

• Flag Ones - Coefficients with value ± 1,
• Flag Sign - Sign of the coefficients,

• Flag FirstNonzero - First nonzero element in reverse order,

• and Flag TR1 - Trailing ones.

And a number of parameters used in the syntax element encoding
phase are computed based on the set flags, such as:

• Nonzero - Non-zero coefficient vector,

• TotalCoef - Number of non-zero coefficients,
Fig. 1. Zigzag scan in H.264/AVC.

M. Orlandić, K. Svarstad Microelectronics Journal 67 (2017) 43–49

44

Download English Version:

https://daneshyari.com/en/article/4971145

Download Persian Version:

https://daneshyari.com/article/4971145

Daneshyari.com

https://daneshyari.com/en/article/4971145
https://daneshyari.com/article/4971145
https://daneshyari.com

