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A B S T R A C T

Integrators are an important functional module of several filters, PID controllers and automated systems.
Designing these integrators in fractional domain enhance their operations and make the responses highly precise
and accurate. This paper presents a Fractional Order Current Integrator using second generation current
conveyor as the active block, and fractional capacitor as a grounded fractance. Analog realization of this
fractance comprises of resistances and capacitances arranged in parallel RC ladder topology. The motivation
behind this work is that more accurate and stable fractional integrator with fewer passive elements, for lower
bias voltage and high dynamic range, can be designed and implemented. Integrators of fractional orders from 0.1
to 0.9 are simulated using TSMC 0.25 µm technology parameters. The transient and frequency responses
obtained in Mentor Graphics are in close conformity with the theoretical values of magnitude and phase.
Robustness of the proposed model is verified by performing Monte Carlo analysis in time and in frequency
domain. Comparisons of fractional order current integrators with existing analog fractance models have also
been included to further validate the work presented in the paper.

1. Introduction

The modeling of real world physical processes as integer models
provides an estimated view of their performance. However, these
processes are generally fractional in nature. The ease in designing
and on chip availability of integer order systems is the key motivation
behind their vast utilization. But nowadays, the feasibility and advance-
ment in implementing fractional order systems has extended its
applications in the area of controllers, optics, fluid mechanics, signal
processing and biomedical engineering [1].

Fractional order systems exhibit exact responses for wide range of
frequencies. For precisely designing such systems, active elements that
provide good responses at high frequency are a prime requirement.
Second generation current conveyor (CCII) is one such block. It is not
bounded by the gain-bandwidth product, as compared to the Op-Amps.
CCII was introduced by Sedra and Smith in 1970 [2], as a variant of
CCI. CCII is a three terminal unity gain active device with input ports
X & Y and output port Z. The ideal equations of the ports of CCII are

V V=Xp Yp (1)

I I= ±Zp Xp (2)

I = 0Yp (3)

where, VXp, VYp are the voltages at the X & Y port; IXp, IYp, IZp are the
currents leaving X, Y & Z ports, respectively. In (2), ‘+’ represents CCII

+& ‘−’ CCII−. CCIIs are widely being utilized as building block in
advanced circuits of both integer and fractional domain. This is due to
the fact that CCII is capable of working in all the three modes: voltage
mode, current mode and mixed mode [3,4]. Further, CCII has inherent
features of low biasing voltage, ideal port impedances, optimal parasitic
impedance level, wide frequency band of operation and expandability
[5,6]. In literature, several CCII based integer order applications are
designed [7,8].

For realizing systems in fractional domain, a device called fractance
or fractional impedance is incorporated. It introduces the fractional
behavior in any circuit and is defined as sα; α being positive or negative
fractional order and s the complex frequency. This fractance can be
realized using analog passive elements [9–27] or electrochemically
[1,28,29]. The electrochemical fabrication of two-terminal fractional
capacitor is based on the concept of metal-insulation-liquid interface,
reported in [1]. The functioning of this fractance is investigated in
fractional circuits of [1,28].

Apart from this, the analog equivalent circuits of s-m fractance
(0<m<1) using passive elements based on Newton process of
approximation [9] and based on poles and zeros of approximated
transfer function [10] are also designed. To design the s−0.5 fractance, a
solution with constant valued R & C combination is used in domino
ladder structure [11] and in tree, H, netgrid and 2-circuit series
topology given in [12,13,23]. Arranging passive elements in parallel
RC ladder with their consecutive values in G.P., is also a convenient
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structure utilized by researchers to realize passive filters [14], second
order passive filters and op-amp based KHN and Salen-Key filters [15].

Considering the properties of CCII and dynamics of fractance,
various fractional order filters have been illustrated in literature. In
all such circuits, fractional integrators play a significant role. Although,
passive realization of integrator provides a simple and cost effective
synthesis procedure, but it introduces the loading effect. However, use
of active elements reduces this effect considerably.

The major contributions of the paper are:

i) A robust and stable active realization of current mode Fractional
Order Current Integrator (FOCI) using CCII+ and passive RC
fractance is proposed.

ii) Using the passive RC fractance [25], fractional capacitors of all
orders of α, α ϵ(0,1) are simulated. Combining these fractances with
current conveyor (CCII), current mode fractional integrators of all
orders of α are developed.

iii) As the model of fractance in [25] uses lesser number of passive
elements (resistances and capacitances) as compared to several
other models presented in literature [10–15,28], the authors have
selected this approach for their fractance design. This has made the
design simpler.

iv) Grounded RC fractance has been implemented in the paper. This
provides two advantages – one that all stray capacitances are
eliminated and second that it facilitates IC implementation.

A brief background of various approaches to design α-fractance is
included in Section 2. Section 3 presents the CCII based circuit of FOCI.
The simulation results of different fractional orders of FOCI, in both
time and frequency domain, are compiled in Section 4. Variation in
resistances and capacitances of the fractance are introduced and Monte
Carlo (MC) analysis is performed. The behavior of the system is
evaluated in both time and frequency domain. These simulations also
validate the robustness of circuit. A comparison of the effect of different
fractance topologies on the output of FOCI is also included in this
section. Section 5 concludes the work.

2. Background of α-fractance design methods

Theoretically, the impedance, Z(s), is defined as

Z s s A( ) = α (4)

where, A=Z(s)│denotes the magnitude of Z(s). Depending on the value
of α, Z(s) represents different passive elements i.e. for α=0: it is a true
resistor, for α=1: true inductor & for α=−1: true capacitor. In the
ranges −1< α<0& 0< α<1, it represents Fractional capacitor (FC)
and Fractional inductor (FL) respectively. FL and FC are together
termed as α-fractance or fractional impedance, (α∈R).

Analog realization of fractance involves an arrangement of analog
elements such as Resistances and Capacitances (R & C) or Resistances
and Inductances (R & L). This provides the fractional impedance [30].
The resistance and capacitance combination is preferred, as it is robust
and easy to implement because of its high availability.

Φ α or πα= (90 )° ( /2)rad (5)

Eq. (5) gives the relation between α and Φ for α-fractance i.e. phase
(Φ) is a function of a fractional order α. For a particular α, the α-

fractance exhibits a constant phase (Φ) throughout the operating
frequency band; therefore, it is referred to as constant phase element
(CPE). Substituting value of α in (5), FC has phase in the range −90° to
0° and FL has phase in range 0° to 90°.

Thus, the synthesis of α-fractance involves a combination of
resistances & capacitances as a network s.t for a fixed value of α, the
phase remains constant in the desired frequency range of interest.
Theoretically, this network should have an infinite structure but for all
practical purposes, it is truncated to finite length architecture [11]. The
prime objective of this design is to have lesser number of elements, to
make it cost effective, simple and feasible to realize on chip. We discuss
three different methodologies for designing of α-fractance proposed in
literature.

2.1. Rational approximation method

As analog realization of fractional systems cannot be performed
directly; their transfer functions are mapped to equivalent approxi-
mated integer order transfer functions, using rational approximation
methods. Carlson approximation, Charef approximation, Matsuda ap-
proximation, Oustaloup approximation and Least Square approxima-
tion methods are few of them [31].

The approximated transfer function of sα is expanded into partial
fractions to obtain poles (pi), residues (zi), and gain (k), where i=0, 1,
2…N (N is the total number of poles or residues). In [10] the author has
proposed α-fractance formation as: the values of resistances Ri, capa-
citances Ci and equivalent impedance Z(s), are calculated for
−1< α<0 using (6) and these passive elements are arranged as in
Fig. 1a; whereas for 0< α<1, the values of Ri, Ci, Rp and the
equivalent admittance Y(s), are calculated using (7) and arranged as
in Fig. 1b

∑R z C
p R

Z s R
sC R

= , = 1 , ( ) =
1 +i i i

i i i

N
i

i i=0 (6)

∑R
p C

C z R
k

Y s
R

sC
sC R

= 1 , = , = 1 , ( ) = 1 +
1 +i

i i
i i p

p i

N
i

i i=0 (7)

A major limitation of this method is that it requires large number of
passive elements (10–20 each), and the values of capacitances may
exceed 1 Farad (1 F) in some cases, which becomes unrealizable.

Iterative methods like Carlson and Matsuda are recursively applied
to obtain the approximated rational function. In order to improve the
approximation, larger number of iterations of the recursive formulae
are performed. However, in doing so, the degree of the resultant
polynomial increases, making the system unstable. Hence, there is a
trade-off between accuracy of approximation and stability of the
system.

2.2. Constant valued passive elements

In this technique the values of the passive elements used are all the
same. Different topologies such as H, tree and netgrid for design of α-
fractance are elaborated in [12,13]. Fig. 2a, b and c show the equivalent
circuits for 0.5-fractance, Z1/2, for each topology.

These architectures are recursive, infinite length and symmetric [8].
In Fig. 2, Z1/2 is given as

Fig. 1. Fractance design for (a) −1< α<0 (b) 0< α<1 [10].
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