
Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

Ping-lock round robin arbiter

Alireza Monemia,⁎, Chia Yee Ooib, Maurizio Palesic, Muhammad N. Marsonoa

a Department of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
b Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
c Kore University of Enna, Enna 94100, Italy

A R T I C L E I N F O

Keywords:
Digital circuits
Delay optimization
Round robin arbiter
Fair arbitration

A B S T R A C T

Arbiter is the core element in shared-resources systems such as in network-on-chip (NoC), conventional
interconnection buses and computer network switch schedulers. Arbiters are located in the critical path delay
(CPD) of these systems, that necessitates fast and fair arbitration. This paper proposes two gate-level arbiter
architectures. The first arbiter is an improved ping-pong arbiter (IPPA) that is optimized to offer lower execution
delay compared to existing round robin arbiters (RRAs). One of the main disadvantages of ping-pong arbiter
(PPA) is that fair arbitration is limited to the uniformly-distributed active requests pattern. To solve this
problem, we propose a new gate-level RRA, called ping-lock arbiter (PLA). PLA, which is an improved IPPA
offers fair arbitration under any distribution of active requests and has the advantage of low execution delay. The
FPGA and ASIC implementations of PLA show up to 18% and 12% improvement in average delay, respectively,
when compared to existing RRAs in literature.

1. Introduction

Arbiters are used in electronic systems for sharing resources and
solving contention when multiple sources request access to a single
shared resource that can accept, at most, one request per clock cycle. A
round-robin arbiter (RRA) allows fair resource-sharing using a flip-flop
based priority pointer p to indicate the priority order of all input
requesters. When an RRA receives multiple simultaneous active re-
quests, it grants the one having the highest priority among all requests.
In order to provide fair arbitration after granting a request, an RRA
updates its priority pointer in such way that the latest granted requester
gets the lowest priority order among all requesters.

RRAs are widely used in electronic systems due to its fairness. RRA
based switch schedulers in computer network applications provide fair
and high utilization of crossbar switches [1–3]. RRAs are also one of the
basic elements of multi-core system-on-chips (MCSoCs) that can be
found in multi-port memory modules [4], conventional bus-based
interconnections [5,6], and in virtual channel (VC) and switch alloca-
tors of modern network-on-chip (NoC) routers [7,8]. As arbiters are
usually located in the critical path, designing of a faster RRA is
important to improve the overall performance of such systems [9].

In this article, we propose the optimization of conventional RRA
architecture to minimize arbitration execution delay with reasonable
area overhead. The assumption throughout this paper is that arbitration

latency is one clock cycle and both requests and grant signals are
represented in one-hot format. All arbiters in this paper are described in
gate level.1

As our goal is to design a fast RRA, we first define two important
delay paths in an RRA at the gate level:

1. Arbiter maximum delay (MD) is the longest delay between input
requests, output grants, and internal priority registers. In other
words, it is the maximum among input-to-output, input-to-register, and
register-to-output delays.

2. Granting delay (GD) is the maximum required delay for an arbiter to
assert a grant after receiving a request. In other words, it is the
maximum input-to-output arbiter delay, where GD MD≤ .

Depending on which application the arbiter is used, both GD and
MD values are important metrics to determine the overall arbiter
performance. Normally, the output ports of arbiters are connected
directly (not registered) to other combinational logics such as multi-
plexers as shown in Fig. 1. This situation is more common when the
arbiter's width is small. In this case, the execution delay of components
after the arbiter can be greater than the arbiter priority pointer
updating delay. Hence, in the case when arbiter is located in the
critical path of a system, reducing the arbiter's GD can result in a shorter
CPD, rather than reducing the update delay. However, as both GD and

http://dx.doi.org/10.1016/j.mejo.2017.03.004
Received 30 August 2016; Received in revised form 1 January 2017; Accepted 13 March 2017

⁎ Corresponding author.
E-mail addresses: monemi@fkegraduate.utm.my (A. Monemi), ooichiayee@fke.utm.my (C.Y. Ooi), maurizio.palesi@unikore.it (M. Palesi), nadzir@fke.utm.my (M.N. Marsono).

1 In this paper, the subscripts following an arbiter name (e.g IPPAn) represents the arbiter size in bits, whereas, when it follows a signal, it represents the n-th bit of the signal.

Microelectronics Journal 63 (2017) 81–93

0026-2692/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00262692
http://www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2017.03.004
http://dx.doi.org/10.1016/j.mejo.2017.03.004
mailto:monemi@fkegraduate.utm.my
mailto:ooichiayee@fke.utm.my
mailto:maurizio.palesi@unikore.it
mailto:nadzir@fke.utm.my
http://dx.doi.org/10.1016/j.mejo.2017.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2017.03.004&domain=pdf


MD are important parameters, we provide analysis on the effect of both
of these delay metrics in this paper.

In this paper, seven most competitive RRAs in literature [2,10–15]
are reviewed. In order to compare arbiters' speed, we also developed all
arbiters based on their original proposed RTL in Verilog HDL. The RTL
codes are described in only using 2-input logic gates (AND, OR, NAND,
NOR), NOT gate and flip-flops. Then, we prototyped all arbiters on
FPGA by setting the synthesizer to be optimized for delay.

As we will discuss in Section 3, ping-pong arbiter (PPA) shows a
better performance than what is expected from its original schematic as
proposed in [10]. PPA even performs better than other arbiters when it
is mapped to an FPGA device. By analyzing the technology mapped
version of PPA by FPGA synthesizer tools, we propose a new delay-
optimized schematic version of PPA which is called improved ping-
pong arbiter (IPPA). However, the main problem of PPA is that it can
only provide fair arbitration under uniformly distributed requests.
Unfair arbitration limits the usage of PPA as a general purpose arbiter.
To overcome this problem, we propose a new round robin-type arbiter
by adding priority lock logic to the IPPA that results in a fair
arbitration. As the lock logic delays are only added to the priority
updating delay path, our proposed arbiter can offer similar GT delay to
IPPA while provides a fair arbitration to all requesters.

The rest of this paper is organized as follow: Section 2 reviews the
existing works on RRA design while provides extensive analysis on RRA
architectures. The related works' delay evaluation and motivation for
optimizing arbitration delay are discussed in Section 3. Section 4
proposes an improved version of ping-pong arbiter (IPPA) which is
optimized for minimum execution delay. Section 5 shows how ping-
pong typed arbiters cannot provide fair arbitration under non-uniform
load distribution or when the arbiter's width is not a power-of-two.
Section 6 describes our proposed PLA, which is a new RRA based on
IPPA architecture. PLA offers an IPPA's minimum delay while provides
fair arbitration of an RRA. Section 7 provides fair arbitration observa-
tion experiment as well as FPGA and ASIC results for all arbiters. We
conclude this paper in Section 8.

2. Related works

This section reviews existing works on RRA design [2,10–17]. This
includes description and detailed micro-architecture of each arbiter.

2.1. Baseline RRA

A generic RRA [16] can be built from arbiter cells as shown in
Fig. 2. While this structure results in a low area cost RRA architecture,
the two wrap-around wires that connect the last cell's co and go outputs
to first cell's ci and gi inputs result in combinational loops. This baseline

RRA has been improved in several other related works [18–20],
although the combinational loop still exists in all aforementioned
works. As combinational loops prohibit static timing analysis by
commercial synthesis tools and may cause pitfalls in testing, we did
not focus on these types of RRAs.

2.2. Programmable priority encoder (PPE) arbiter

Programmable priority encoder (PPE) arbiter [2] is a round robin
arbiter that is composed of two fixed priority encoders (FPEs). An FPE is
an arbiter which always serves its input requesters by a fixed priority
order, where the least and the most significant requests have the
highest and the lowest priority order, respectively. FPE grants an active
request only if there is no other active request(s) between it and the
least significant request.

Fig. 3 illustrates the structure of an FPE that is thermometer-coded
input requests masked by ANDing with the input requests. The
thermometer encoder can be implemented efficiently using parallel
prefix networks (PPNs). Ugurdag et al. [14] compared the performance
of RRA using four different PPNs, namely as Kogge-Stone [22], Ladner-
Fischer [23], Brent-Kung [24] and Han-Carlson (HC) [21]. The
comparison in [14] showed that HC [21] outperforms the rest for most
arbiter sizes. As a result, we select HC for generating thermometer
encoder as illustrated in Fig. 3(a).

PPE arbiter [2] is generated by using two FPEs working in parallel
as shown in Fig. 4. The PPE's input requests are fed-in directly to the
first FPE, while the second FPE receives a subset of input requests
masked with priority pointer value p (which is the thermometer-coded
of the highest priority request). Hence, the second FPE searches from
the highest priority requester to the most significant requester. If any
request is granted by the second FPE, the final grant is the output of
second FPE. Otherwise it is selected from the first FPE.

2.3. Ping-pong arbiter (PPA)

Ping-pong arbiter (PPA) was proposed by Chao et al. [10]. PPA is
made by connecting narrow arbiters (2-bit arbiters) in a binary tree
format to generate wider arbiters. Fig. 5(a) shows the schematic of a 2-
bit PPA (PPA2) as proposed in [10]. The grant signal of a PPA2 is valid
only if it also receives the next level PPA2 grant. Hence, the grant
signals of arbiters in each layer are masked with the grant signal of their

Fig. 1. Bus arbiter.

Fig. 2. Baseline RRA.

Fig. 3. FPE (a) A thermometer encoder using Han-Carlson parallel prefix adder [21]. (b)
Generating FPE using thermometer encoder.

Fig. 4. PPE arbiter functional block diagram.

A. Monemi et al. Microelectronics Journal 63 (2017) 81–93

82



Download English Version:

https://daneshyari.com/en/article/4971241

Download Persian Version:

https://daneshyari.com/article/4971241

Daneshyari.com

https://daneshyari.com/en/article/4971241
https://daneshyari.com/article/4971241
https://daneshyari.com

