
Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

Energy-efficient data prefetch buffering for low-end embedded processors

Muhammad Yasir Qadria, Nadia N. Qadrib, Martin Fleurya,⁎, Klaus D. McDonald-Maiera

a School of Computer Science and Electronic Systems, University of Essex, Colchester Co4 3SQ, UK
b Department of Electrical Engineering, COMSATS Institute of Information Technology, Wah Campus, Pakistan

A R T I C L E I N F O

Keywords:
Control words
Data prefetch
Embedded processor
Micro-architecture

A B S T R A C T

An energy-efficient architecture should jointly optimize energy consumption and throughput, as captured by the
Energy-Delay-Square Product (ED2P) metric. This paper introduces a prefetch data buffer micro-architecture,
which achieves that goal with the aid of software-inserted control words to govern the prefetch process. The
proposed architecture is aimed at low-end embedded processors, which, so as to reduce energy consumption,
lack a cache-based memory hierarchy. By identifying after compilation which data should be prefetched and
modifying the object code, the rate of prefetch misses is reduced. And by pre-computing memory addresses using
auxiliary software after compilation and modifying the object code, address computation by hardware at run
time is avoided, reducing pipeline stalls and, thus, improving throughput. Additionally in the case of branches,
by prefetching two data items at any one time, alternative instruction outcomes are anticipated. The paper
contains results from running a range of well-known and representative benchmarks on the proposed
architecture. There was an improvement of 6−20% compared to an unbuffered architecture in execution times
when tested over those seven benchmarks. Furthermore, the average ED2P for the buffered architecture when
normalized against the same architecture without buffering was found to vary between 54% and 90% according
to benchmarking, though there is a cost in code size increase. That is to say, for the benchmarks tested there was
a net energy efficiency improvement of between 10% and 46% in comparison with the equivalent unbuffered
architecture with a lower area overhead.

1. Introduction

The growing proliferation of embedded battery-powered devices,
often performing complicated tasks, leads to the prioritization of
energy-efficient design optimizations. Such design optimizations strive
to strike a balance between energy usage and throughput in a system
and do not simply attempt to reduce energy consumption. In some
energy-efficient designs, for some applications, there might even be a
negative impact on energy consumption. However, the throughput can
to rise to compensate, as quantified in the Energy Delay Product (EDP)
metric [1].

The proposed architecture gives preference to a data prefetch buffer
rather than a data cache. Though cache-based memory hierarchies are
the norm for general-purpose PC architectures, in the embedded world
system, architectures may employ alternatives to caches. The energy
usage and chip area take-up of caches these can both be considerable. In
addition, if the cache is not carefully tuned the cache miss ratio will also
increase, leading to processor idling. Thus it is [2] that caches are a
problematic feature in battery-powered embedded systems. Prior
research [3–5] confirms that caches may be responsible for as much

as 50% of a low-end processor's energy budget. For the most part, not
herein, a cache-like structure underpins software-prefetching schemes,
i.e. software prefetching assists already present hardware cache mem-
ories. However, the proposed scheme does not require a cache-like
structure to be present, which is why it is likely to be more effective.
Instead, the proposed architecture with a data prefetch buffer replaces
the typical cache memory, and, hence, the inherent disadvantages of
such caches (i.e. compulsory, conflict, and capacity misses). Comparing
to the typical cache, the proposed prefetch buffer requires: much
smaller storage, is more area efficient, and less power consumption.

Compiler-controlled prefetching of data [6] is one way that a data
prefetch buffer can take the place of a data cache in an energy-efficient
manner. However, prefetching typically suffers from an increased
memory bandwidth. This increase is caused by unnecessary prefetches,
owing to false predictions by the particular algorithm employed. (For
previous research on prefetch buffering refer to Section 2). This paper
proposes a software-controlled prefetch buffering architecture that,
through the mechanism of control-word insertion, removes such false
predictions. The proposal also has a number of additional advantages,
including a reduction in pipeline stalls arising from memory address

http://dx.doi.org/10.1016/j.mejo.2017.01.014
Received 20 July 2016; Received in revised form 17 November 2016; Accepted 2 January 2017

⁎ Corresponding author.
E-mail address: fleum@essex.ac.uk (M. Fleury).

Microelectronics Journal 62 (2017) 57–64

0026-2692/ © 2017 Published by Elsevier Ltd.

MARK

http://www.sciencedirect.com/science/journal/00262692
http://www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2017.01.014
http://dx.doi.org/10.1016/j.mejo.2017.01.014
http://dx.doi.org/10.1016/j.mejo.2017.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2017.01.014&domain=pdf


calculations. We believe that the introduction of a varying instruction
size, when control words are introduced is justified by the gains made.
The Acorn RISC Machine (ARM) in its Thumb variant also includes 16-
bit and 32-bit instructions.

Low-end embedded microprocessors and microcontrollers typically
have on-chip memory. This is a way to reduce the number of additional
components needed in an embedded application. Such an arrangement
also results in single-cycle access to the memory, which this paper's
proposal takes advantage of. In a further simplification, the instruction
pipeline changes from the basic five-stages of a Reduced Instruction Set
Processor (RISC) to just two stages. Both the 8-bit Atmel AVR [7] and
the Peripheral Interface Controller (PIC) microcontroller families [8]
support on-chip memory and two-stage pipelines, which the proposed
software-based prefetching technique exploits. Both families also have a
Harvard architecture, which allows instructions and data to be accessed
simultaneously. As these microcontroller families are extensively
deployed, the proposal in this paper is of wide generality and applic-
ability to embedded applications. For example, by 2013 an AVR was
present on every one of 700,000 official Arduino boards1 and
Microchip, PIC's manufacturer, output a 2013 press release2 stating
that it supplies one billion processors per year. According to an SAE
article of 2014 entitled “Market for 8-bit chips remains strong”, Costlow
points out that such processors account for 24% of the automotive
microcontroller market, which figure is expected only to decline to 22%
by 2018. As the vast majority of applications for low-end processors are
in embedded computing, not in general-purpose computing, our
proposal is geared towards embedded computing applications.
Though, as Section 2 describes, pioneering work has gone on in the
past within the general field of pre-fetching, we believe there is still
scope for improvements, even though these improvements will now be
focussed on specific domains.

Immediately after the compilation of application code, our software
inserts control words, which cause a processor to prefetch data required
by the next instruction in the two-stage instruction pipeline. In this
way, the method avoids static pointer-based data references and
associated address computations. More generally, the prefetch techni-
que is implementable either by an additional software tool operating at
compile time, the choice herein, or by an enhanced compiler directly,
not used by us. Specifically, during the software creation phase or after
program compilation, control words are placed at a location at least one
instruction ahead. As a result, during execution the data required can be
fetched without pipeline stalls. Therefore, this architecture provides
greater energy efficiency when compared to an unbuffered architecture
with lower area overhead. As with other software prefetching schemes,
our proposal leads to what could be for some applications a significant
increase in code size owing to the need to store some 32-bit rather than
16-bit instructions to accommodate control words. The significance will
depend on the size of the application code, which might anyway fit
within the existing on-chip memory.

Although the previously-mentioned EDP [1] is a widely adapted
metric to evaluate energy and delay effects, Martin et al. [9] recom-
mends a weighted approach, using another metric i.e. energy-delay-
square-product (ED2P), which in [9] is alternatively called energy-time-
square (ET2), as T is delay. This metric is very useful in evaluating
trade-offs between the circuit-level power consumption and the overall
energy efficiency of the system [10]. The ET2 (or alternatively ED2P)
metric was first introduced by Martin et al. in [9] in order to evaluate
the asynchronous MIPS3000 processor. The validity of the metric was
later analysed by Martin in [11,12]. In [13], ED2P is defined as ED2P=
EPI·CPI2 = EPC·CPI3, where EPI is the energy per committed instruc-
tion, EPC is energy per cycle, and CPI is cycles per instruction. For a

complete execution of benchmark i, ED2P can be calculated as:
ED2Pηi=ηi. EPC.CPI3, where ηi is the number of instructions executed.
However, herein we use the notation ED2P instead of ED2Pηi as a
simplification.

In evaluating a design [13], ED2P highlights performance more than
EDP does. To first order, ED2P is also independent of variations in
voltage and frequency. A mathematical analysis of the advantages of
using ET2 over ET can be found in [11], where it is said that “The
energy-delay product E×t is often used to compare designs but is
unfortunately not an acceptable metric”. Indeed, some authors, for
example [14], even suggest using the cube of delay to weight the delay
more than the energy of a system. However, we adopt a more moderate
approach. The focus of the architecture is to achieve greater throughput
for an overall reduced active cycle for a processor. Thus, the authors of
this paper consider ED2P to be the most appropriate metric for the
research presented in this paper. Motivated and guided in that way, in
this paper we introduce a novel prefetch data buffering micro-archi-
tecture for low-end, embedded processors with on-chip memories,
which provides increased energy efficiency.

Finally in this introduction, notice that a brief outline of some of our
ideas has been filed as a U.S. patent application [15], though without
relevant prior research papers, consideration of the context, or perfor-
mance results and analysis, as now occurs in this paper. This paper also
includes a longer description of the innovation and broadens the
treatment. Our ideas are also applicable to instruction prefetching. In
[16] we did exactly that, thus confirming the benefit of the ideas
contained in this paper for data prefetching.

The rest of this paper is arranged as follows. Section 2 is a review of
related work in this field before going on to describe the proposed
architecture in Section 3. In Section 4, the area and power overheads of
the software-controlled prefetching are compared against those of the
original unbuffered architecture. A detailed analysis of energy con-
sumption reduction and throughput improvement occurs using various
benchmark applications. Finally, Section 5 rounds up the paper with
some concluding remarks.

2. Related research

A significant trend in low-power cache design [17] is to include an
additional small extra data buffer, which is accessed directly by the
embedded system. Therefore, these designs require the buffer to be
accessed first, preventing altogether direct access to the original
caching structure. The intention of such designs is to save energy by
achieving a high hit rate to the small intermediate buffer. Notice that a
larger buffer does not result in the same energy savings. Investigation of
these intermediate hardware buffers or caches is the inspiration behind
substituting software control of data prefetch. Crucially, however, the
current paper avoids a cache-based memory hierarchy. On the other
hand, purely hardware-guided prefetching of data into caches, e.g.
[18], may be energy intensive [19] and is certainly not suitable for
multicore platforms (For some counter-examples of energy efficient
hardware prefetching consult [20]).

Most recently, there has been interest in introducing machine
learning into prefetching. Work in [21] considers the risk of aggressive
prefetching saturating the memory bandwidth of a multicore processor,
for example, with a 40% risk of hardware prefetching harming the
performance of Intel's Sandyridge i7-2600K processor. Instead [21]
considers dynamically combining hardware- and software-based pre-
fetching in the Adaptive Resource Efficient Prefetching (AREP) frame-
work. That framework examines a selection of prefetch configurations
in order to choose the one with the least impact on performance. The
work in [21] reports an 8% increase on average in performance from
applying AREP. The automatic prefetching tuner (PATer) for the
POWER8 processor [22] provides a way of tuning the prefetch
configuration. The need arises because the POWER8 processor has a
25-bit hardware register in which the cache prefetch configuration can

1 According to Cuartielles in 2013 on the Arduino FAQ at http://www.arduino.cc/en/
Main/FAQ

2 Available at http://www.microchip.com/pagehandler/en-us/press-release/
microchips-12-billionth-pic-mi.html

M. Yasir Qadri et al. Microelectronics Journal 62 (2017) 57–64

58



Download English Version:

https://daneshyari.com/en/article/4971262

Download Persian Version:

https://daneshyari.com/article/4971262

Daneshyari.com

https://daneshyari.com/en/article/4971262
https://daneshyari.com/article/4971262
https://daneshyari.com

