Microelectronics Journal 61 (2017) 57-66

Contents lists available at ScienceDirect

MICROELECTRONICS
JOURNAL

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

Efficient utilization of imprecise computational blocks for hardware
implementation of imprecision tolerant applications

@ CrossMark

Hamid Reza Mahdiani®*, Mohammad Haji Seyed Javadi®, Sied Mehdi Fakhraie®

@ Computer Science and Engineering Department, Shahid Beheshti University, G.C. Tehran, Iran
® Faculty of Electrical Enginering, Shahid Beheshti University, G.C. Tehran, Iran
€ School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

ARTICLE INFO ABSTRACT

Recently, it has been reported that exploiting imprecise arithmetic building blocks such as adders and multipliers
significantly improves digital implementation costs as well as performance of an important category of systems
block named as Imprecision Tolerant (IT) applications. We have categorized this new type of functional units as Bio-
Error-behavior compatibility matching inspired Imprecise Computational (BIC) blocks. To efficiently exploit BICs in an IT application, however, the
mﬁiﬁ;ﬁfz:;:ﬁ;:g (IT) application traditional hardware design flow should also be customized based on unique features of this new type of
VLSI design flow computing blocks. The most significant modification on traditional design flow to maximize the cost-

performance of BIC implementations is to verify that the application is capable of tolerating those types of
errors which are inherently introduced by the selected BIC based on its internal structure. We call this “error-
behavior compatibility matching” between the system and the selected BIC building blocks. In this paper, we
introduce and explain a customized hardware design flow for BICs with the main focus on error-behavior
compatibility matching process as the main difference between traditional and BIC design flows. Two different
error-behavior compatibility matching strategies are also introduced and their applicability is verified by
applying them to exploit BICs for hardware implementation of some significant case studies including a general
multiply-accumulate (MAC) block as the basic building block of many signal processing applications as well as

Keywords:
Bio-inspired Imprecise Computational (BIC)

an Artificial Neural Network (ANN) as a critical instance of MAC-based IT applications.

1. Introduction

Many real-world problems (such as classification, recognition,
image and voice processing, etc.) are pervasively imprecise and
uncertain [1]. Therefore, most of the existing algorithms and meth-
odologies which are mainly developed to deal with these real-world
problems are expected to inherently be capable of tolerating or even
exploiting this existing unavoidable imprecision and uncertainty [2,3].
Otherwise, they will work inefficiently at elevated costs [4]. We
categorized this type of applications and named them as Imprecision
Tolerant (IT) applications and also clarified their distinct border with
respect to other syntactically similar concepts such as error or fault
tolerance [5]. An application is Imprecision-Tolerant if it tolerates some
degrees of imprecision when realized using an implementation bed. In
other words, the implemented system produces acceptable results to the
end user despite existing sources of imprecision [5]. The main
importance of IT applications lies in this fact that their hidden property
of tolerance against imprecision can be explicitly traded to gain
considerable and various benefits in their realization process according

* Corresponding author.
E-mail addresses: mahdiani@sbu.ac.ir, mahdiani@gmail.com (H.R. Mahdiani).

http://dx.doi.org/10.1016/j.mejo.2017.01.002

to their implementation bed [5]. As an instance in digital VLSI territory,
a designer might utilize some irregular adders and multipliers that are
intentionally relaxed to provide an approximation of the computation
result instead of its precise value. This relaxation also might imply
decreased implementation costs of these Bio-inspired Imprecise
Computational blocks (BICs) in terms of area, delay, and power
consumption with respect to the traditional precise components [6].
Although some other names such as approximate [7] or sloppy [8] are
later proposed for this type of blocks, the term imprecise is carefully
chosen to show tight correspondence of the BICs with Imprecision-
Tolerant applications. Besides, the term imprecision covers much
broader area with respect to approximation or sloppy. As a very
significant instance, imprecision might be introduced due to unwanted
soft-errors which frequently occur in a nano-level CMOS circuit. We
have shown that in this case, the imprecision tolerance of an application
might be exploited to reduce system fault-tolerance cost when realizing
it in a faulty implementation bed [5].

The important note about IT applications is that different IT
applications provide intrinsic susceptibility against different impreci-

Received 20 April 2016; Received in revised form 24 November 2016; Accepted 4 January 2017

0026-2692/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00262692
http://www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2017.01.002
http://dx.doi.org/10.1016/j.mejo.2017.01.002
http://dx.doi.org/10.1016/j.mejo.2017.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2017.01.002&domain=pdf

H.R. Mahdiani et al.

sion types. For example, although a binary ANN is not sensitive against
number or even amplitude of the imprecision sources, it is highly
sensitive about average of the imprecision sources due to its accumula-
tion-based structure. On the other hand, an image or voice processing
system does not directly care about mean imprecision value. While in
contrast, it is highly susceptible against both number and maximum
absolute value of the imprecision source(s) that distinguishably alter
the values of pixels or voice samples, so that the changes can be seen or
heard by human eyes and ears. A very similar concern exists about the
BICs and they also can introduce different imprecision types. In contrast
to the traditional precise computational blocks of the same type (i.e.
adder or multiplier) which have a similar functionality (based on binary
addition and multiplication rules) and differ only in their physical
properties [9], the BICs of the same type provide different physical
properties as well as different error behaviors which describes their
result-approximation characteristics [6] according to their internal
structure. Based on this important similar issue in both IT applications
and BICs, there is a very important conceptual difference when using
BICs to implement an IT application instead of precise components. In
contrast to all precise blocks of the same type which can be functionally
exploited in place of each other to implement an application, different
BICs of the same type which propose different error-behaviors does not
provide similar effectiveness if they are utilized to implement a specific
IT application. In a more technical way and in contrast to precise
blocks, choosing a suitable BIC is an application-oriented task and
significantly affects the performance and physical properties of the final
implementation. Therefore, it is mandatory to investigate the error
behavior of BICs to check their “error behavior compatibility” with
respect to necessities of a specific IT application. A BIC error behavior
should be described in terms of a spanning set of error criteria to
correctly demonstrate its error-behavior from different aspects. There
are many different well-known and standard error criteria which can be
simultaneously exploited to express a BIC error behavior [10]:
Probability of Error (PE) which indicates the probability of producing
an erroneous result by BIC, Mean output Error (ME), Mean Squared
output Error (MSE), or maximum (MAX) and minimum (MIN) output
errors. The error factors of a BIC are computed with respect to the
output results of a corresponding precise component. As an example,
based on error sensitivity of an ANN, an imprecise adder which mostly
provides erroneous results (high PE) while its average error is very low
due to its small positive and negative errors (low MAX and ME) [6], is
more error behavior compatible with an ANN with respect to another
imprecise adder which mostly leads to the precise result (low PE) while
also provides rare but large and positive errors [11] (high MAX and
ME). Both of these two adder types will be discussed in more detail in
the following sections.

Although the experimental results show that using a BIC for
implementing an application can be generally feasible [6,12-15], it is
very important to determine a customized VLSI design flow for BICs to
efficiently exploit the tolerance of the IT applications and gain the best
performance in case of BIC implementation. The next section introduces
the problem and deals with the main drawbacks of the traditional
design flow when exploiting BICs for system implementation. Section 3
reviews the most important recently published BIC related works and
investigates them from design flow aspects to demonstrate their
common pitfalls due to lack of an convenient design flow for BICs.
Section 4 proposes an efficient design flow for BICs while it also
provides a detailed comparative study between (traditional) precise and
(introduced) BIC design flows. Section 5 specifically focuses on a major
difference between traditional and BIC VLSI design flows named as
error behavior compatibility matching process. Two different error-
behavior compatibility matching approaches are introduced in this
section. These two methods can be used either individually or in a
combined manner to determine whether a BIC (with a specific error-
behavior) is suitable for handling an application or not. Application of
these two methods for a MAC (as the basic underlying component of

58

Microelectronics Journal 61 (2017) 57-66

many DSP systems) is also demonstrated in this section. Section 6
presents experimental results of a pure MAC as well as an ANN (as a
critical and practical MAC based application) to support the results of
the previous section and prove the efficiency of the proposed methods.
The last section concludes the paper.

2. Problem description

To gain the best performance when implementing an IT application
using BICs, the design flow should be customized to both quantify and
qualify a BIC component in terms of amount and type of its errors
respectively to guarantee its efficiency (not only its feasibility) for
implementation of a specific IT application. As each BIC non-uniformly
introduces some types of errors based on its internal architecture (or
result approximation method), the quantification process deals with
tuning the total amount of errors inside a BIC (and letting it to increase)
up to maximum acceptable error which can be tolerated by each
application. This implies that in addition to Word-Length (WL) which
uniformly affects all types of errors in a block, the BIC components
should be equipped with one or even more extra parameters named as
imprecision parameters. These parameters enable the designer to fine-
tune the levels of the BIC specific imprecision types in order to
maximally utilize the inherent tolerance of the specific IT application
against that type of imprecision and gain the maximum benefit [16].

The qualification process on the other hand is a higher level and
more important concept which investigates whether a BIC is basically
compatible with an application or not, before any further effort for fine-
tuning of its imprecision parameters. For normal implementation of a
system, the designer picks some suitable components based only on
their physical properties. For a BIC implementation, however, the error-
behavior of the BIC components is the dominant factor in choosing
suitable components. Because as an early stage in BIC design process, it
is very important to basically determine whether the specific types of
errors (PE, ME, MSE, MAX, etc.) which are introduced by a BIC due to
its internal structure, suitably match with the types of errors which can
be tolerated by the specific IT application or not. We name this
qualification process as error-behavior compatibility matching which
determines if the specific application inherently tolerates the same type
of imprecision which are introduced by a specific BIC or not. The results
of the error behavior compatibility matching process might also be
utilized to guess the promising applications of a previously designed
BIC, or to determine the suitable error-behavior of a BIC that should be
specifically designed for a certain application. The error behavior
compatibility matching concept, clearly emphasizes on application-
oriented nature of the suitable BIC selection.

A customized design flow for BICs including quantification (fine
tuning) and qualification (error behavior compatibility matching) steps
is presented in the following sections of the paper to resolve the
addressed inefficiencies.

3. Related works

Working on imprecise building blocks and their applicability in
realization of IT applications has been seriously started around 2010
[6]. Beside some minor weaknesses, lack of exploiting even an
elementary but clear and convenient design flow should be considered
as the major drawback of all previously published works in this area. As
we will briefly review, the researchers in this field mostly have focused
only on one or more introductory sub-domains including: (1) exploiting
different techniques for development of new BICs (such as adders and
multipliers), (2) using analytical or simulation approaches for compar-
ing the proposed BIC with other existing BICs of the same type, and
finally (3) proving only the feasibility (and not even the efficiency) of
utilizing the proposed block in at most one IT application. Due to lack of
a customized and well-defined design flow for BICs, all these works
suffer from important weaknesses even in their activities in each of



Download English Version:

https://daneshyari.com/en/article/4971306

Download Persian Version:

https://daneshyari.com/article/4971306

Daneshyari.com


https://daneshyari.com/en/article/4971306
https://daneshyari.com/article/4971306
https://daneshyari.com/

