
An explanation-based tools for debugging constraint

satisfaction problems

Samir Ouis a,*, Mohamed Tounsi b

a Imam University, Computer Science Department, Riyadh, P.O. Box 84880, Saudi Arabia
b Prince Sultan University, Computer Science Department, Riyadh, P.O. Box 66833, Saudi Arabia

Received 6 September 2005; received in revised form 7 October 2007; accepted 16 October 2007

Available online 17 November 2007

Abstract

This paper describes an explanation-based tools for constraint programming system. These tools provide to the user the conflicts when it raise

during solving process. Our tools simulate constraint additions and/or constraint relaxations without any propagation; it also determine if a given

constraint belongs to a conflict and it provide diagnosis tool (e.g. why variable v cannot take value val?). With more user-friendly representation of

conflicts and explanations, our proposed tools give better problem understanding to the user. We prooved that the proposed tools are efficient, and

while there is no debugging system that allow the user to interact with the solver, our explanation-based tools could be used for many other

applications.

2007 Elsevier B.V. All rights reserved.

Keywords: Constraint programming; Explanations; Conflicts; Debugging; Solver

1. Introduction

Constraint programming has been proved extremely

successful for modelling and solving combinatorial search

problems appearing in fields such as scheduling resource

allocation and design. Several languages and systems such as

CHIP[1], CHOCO[2], GNUPROLOG[3], ILOG SOLVER[4] have been

developed and widely spread. But these systems are helpless

when the constraint network to solve has no solution. Indeed,

only a no solution message is sent to the user who is left

alone to find: why the problem has no solution? which

constraint to relax in order to restore the coherence? etc.

These questions yield two different problems: explaining

inconsistency and restoring consistency. Several theoretical

answers have been provided to address those questions:

QUICKXPLAIN[5] computes conflicts for configuration problems

[6–8] introduces tools to dynamically remove constraints, etc.

User interaction requires user-friendly and interactive tools.

In this paper, we advocate for the use of k-relevant explanations

[9] to provide explanation-based solving system.

The proposed system helps the user to understand

inconsistency, to simulate constraint additions and/or retrac-

tions (without any propagation), and to determine if a given

constraint belongs to a conflict. The most important feature is

that it provides diagnosis tools (e.g. why variable v cannot take

value val?); in fact our system is based upon the use of conflict

sets (a.k.a. nogood [10]), explanations [11].

This paper is organized as follows: we review the definition

and generation of conflicts and explanations within constraint

programming in Section 2. Then, we introduce k-relevant-

bounded explanations (Section 3) and give an illustrative

example (Section 4). After, we illustrate the use of k-relevant

explanations in our system (Section 5). Finally, we give a short

overview of our implementation.

2. Conflict and explanations for constraint

programming

A constraint satisfaction problem (CSP) is defined by a set

of variables V ¼ fv1; v2; . . . ; vng, their respective value

domains D1;D2; . . . ;Dn and a set of constraints

C ¼ fC1;C2; . . . ;Cmg. A solution of the CSP is an assignment

of values to all the variables such that all constraints in C are

satisfied. We denote by solðV ;CÞ the set of solutions of the CSP

ðV ;CÞ.

www.elsevier.com/locate/asoc

Available online at www.sciencedirect.com

Applied Soft Computing 8 (2008) 1400–1406

* Corresponding author.

E-mail addresses: sam_ouis@hotmail.com (S. Ouis),

mtounsi@cis.psu.edu.sa (M. Tounsi).

1568-4946/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2007.10.019

mailto:sam_ouis@hotmail.com
mailto:mtounsi@cis.psu.edu.sa
http://dx.doi.org/10.1016/j.asoc.2007.10.019

In the following, we consider variables domains as unary

constraints. Moreover, the classical enumeration mechanism

that is used to explore the search space is handled as a series of

constraints additions (value assignments) and retractions

(backtracks). Those particular constraints are called decision

constraints. This rather unusual consideration allow the easy

generalization of the concepts that are presented in this paper to

any kind of decision constraints (not only assignments but also

precedence constraints between tasks for scheduling problems

or splitting constraints in numeric CSP, etc.).

2.1. Definitions

Let us consider a constraints system whose current state (i.e.

the original constraint and the set of decisions made so far) is

contradictory. A conflict set (a.k.a. nogood [10]) is a subset of

the current constraints system of the problem that, left alone,

leads to a contradiction (no feasible solution contains a

nogood). A conflict divides into two parts1: a subset of the

original set of constraints (C0 �C in Eq. (1)) and a subset of

decision constraints introduced so far in the search (here

dc1; . . . ; dck).

solðV ; ðC0 ^ dc1 ^ . . . ^ dckÞÞ ¼ ? (1)

An operational viewpoint of conflict sets can be made explicit

by rewriting Eq. (1) the following way:

C0 ^ ð ^
i2 ½1::k�n j

dciÞ! : dc j (2)

Let us consider dc j : v j ¼ a in the previous formula. Eq. (2)

leads to the following result (sðvÞ is the value of variable v in the

solution s):

8 s2 solðV ;C0 ^ ð ^
i2 ½1::k�n j

dciÞÞ; sðv jÞ 6¼ a (3)

The left-hand-side of the implication in Eq. (2) is called an

eliminating explanation (explanation for short) because it

justifies the removal of value a from the domain dðvÞ of variable

v. It is noted: expl ðv 6¼ aÞ.
Explanations can be combined to provide new ones. Let us

suppose that dc1

W
. . .
W

dc j is the set of all possible choices for

a given decision (set of possible values, set of possible

sequences, etc.). If a set of explanations C01! : dc1, . . .,
C0j! : dc j exists, a new conflict can be derived:

C01 ^ . . . ^C0j. This new conflict provides more information

than each of the old ones.

For example, a conflict can be computed from the empty

domain of a variable v (using explanations for each of the

removed values):

^
a2 dðvÞ

explðv 6¼ aÞ (4)

2.2. Storing explanations: k-relevant-bounded learning

There generally exists several explanations for the removal

of a given value. Several different approaches were introduced

to handle that multiplicity. Dependency directed backtracking

[12] records all encountered explanations. The major incon-

venience of this approach is its exponential space complexity.

Indeed, the number of recorded explanations increases in a

monotonous way. Various algorithms only keep a single

explanation: dynamic backtracking [13] and its improvements

(MAC-DBT [14], generalized dynamic backtracking [15],

partial-order dynamic backtracking [16]) and conflict-directed

backjumping [17]. The idea is to forget (erase) explanations

which are not valid any more considering the current set of

decision constraints. Space complexity therefore remains

polynomial while ensuring the completeness of the algorithms.

Unfortunately, this idea is not really compatible with

debugging: only one explanation is kept and past information

are completely lost.

Instead of recording only one explanation, a more interesting

idea is to keep information as long as a given criterion is

verified:

� Time-bounded criterion: explanations are forgotten after a

given time. This criteria is similar to tabu list management in

tabu search [18].

� Size-bounded criterion: [19] has used a criteria defined in

[20]. This criteria keeps only the explanations with a size

lower or equal to a given value n. This criteria limits the

spatial complexity, but may forget really interesting nogoods.

� Relevant-bounded criterion: explanations are kept if they are

not too far from the current set of decision constraints. This

concept (called k-relevant) has been introduced in [9] and

focus explanations/conflict management to what is important:

relevanct wrt the current situation.

Time and size-bounded recording do have a controllable

space complexity. This is also the case for k-relevant learning

(cf. Section 3). As we shall see, our tools are meant for the

debugging and the dynamic analysis of programs: the space

occupation overhead is well worth it.

3. k-Relevant-bounded explanations

While solving a constraint problem, the current state of

calculus can be described with two sets of constraints: R the set

of relaxed constraints (decisions that have been undone during

search, constraints that have been explicitly relaxed by the user,

etc.) and A the set of active constraints (the current constraint

store). hA;Ri is called a configuration. Following [9], we can

now define a k-relevant explanation as:

Definition 1 (k-relevant explanation [9]).

Let hA;Ri a configuration. An explanation e is said to be k-

relevant if it contains at most k � 1 relaxed constraints, i.e.

je\Rj< k.

1 Notice that some special cases may arise. If k< 1, the considered problem is

proved as over-constrained. Some constraints need to get relaxed. If C0 ¼ ? , the

set of decisions that has been taken so far is in itself contradictory. This can

happen only if no propagation is done after a decision has been made.

S. Ouis, M. Tounsi / Applied Soft Computing 8 (2008) 1400–1406 1401

Download English Version:

https://daneshyari.com/en/article/497135

Download Persian Version:

https://daneshyari.com/article/497135

Daneshyari.com

https://daneshyari.com/en/article/497135
https://daneshyari.com/article/497135
https://daneshyari.com

