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Prognostics and health management of lithium-ion batteries, especially their remaining useful life (RUL) predic-
tion, has attractedmuch attention in recent years because accurate battery RUL prediction is beneficial to ensur-
ing high reliability of lithium-ion batteries for providing power sources for many electronic products. In the
common state space modeling of battery RUL prediction, noise variances are usually assumed to be fixed. How-
ever, noise variances have great influence on state space modeling. If noise variances are too small, it takes long
time for initial guess states to approach true states, and thus estimated states and measurements are biased. If
noise variances are too large, state space modeling based filtering will suffer divergence. Besides, even though
a same type of lithium-ion batteries are investigated, their degradation paths vary quite differently in practice
due to unit-to-unit variation, ambient temperature and other working conditions. Consequently, heterogeneity
of noise variances should be taken into consideration in state spacemodeling so as to improve RUL prediction ac-
curacy. More importantly, noise variances should be posteriorly updated by using up-to-date battery capacity
degradation measurements. In this paper, an efficient prognostic method for battery RUL prediction is proposed
based on state space modeling with heterogeneity of noise variances. 26 lithium-ion batteries degradation data
are used to illustrate how the proposed prognostic methodworks. Some comparisons with other common prog-
nostic methods are conducted to show the superiority of the proposed prognostic method.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Lithium-ion batteries have been widely used in many electronic
products because of their merits including high energy density, good
power capability, long lifespan, and environmental friendliness [1]. Bat-
tery performance degrades with cycling and aging. Battery failure may
result in catastrophic effects, i.e. electrical fire because of battery ther-
mal runaway of a Boeing 787 in 2013, and the recalls of lithiumbatteries
used in notebooks due to circuit defects and overheating in recent years.
To keep maintaining high reliability of lithium-ion batteries and help
users make a replacement decision, accurate estimation of maximum
available battery performance and prediction of remaining battery per-
formance are needed. Battery capacity is commonly chosen as an indica-
tor of battery state of health. Battery failure can be defined as that the
capacity of a battery drops below a failure threshold defined by users.
Thus, battery remaining useful life (RUL) can be defined as the period
between the current cycle and a cycle when the capacity of the battery
reaches the failure threshold for the first time [2,3].

To predict battery RUL, many regression based prognostic methods
have been proposed in the recent years [4]. In between, state space
modeling of RUL prediction attracts much attention because it is able
to track battery capacity degradation over time by using the idea of dy-
namic Bayesian inference. Here, states are parameters of regression
models, and they are hidden and can not be directly observed.Measure-
ments are observable battery capacity degradation data and they are
used to infer the posterior distributions of the hidden states. Following
this idea, many scholars have done good research works along this
idea. Burgess [5] built a linear and Gaussian state space model and
used Kalman filtering to estimate valve regulated lead acid battery ca-
pacity. Then, Burgess projected estimated capacity to future capacity
and predicted battery RUL. To extend linear state space modeling to
non-linear state space modeling, Saha et al. [6] used an exponential
function as an empirical battery capacity degradation model and
employed particle filtering to estimate lithium-ion battery capacity. In
their successive work [7], they experimentally proved that non-linear
state space modeling solved by particle filtering can produce higher
RUL prediction accuracy than autoregressive integratedmoving average
and extended Kalman filtering based prognostic methods. Further, He
et al. [8] used the sum of two exponential functions instead of the expo-
nential function as an empirical battery capacity degradation model so
as to improve the fitting ability of the previous empirical battery
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degradationmodel. To enhance the local fitting ability of the sumof two
exponential functions, Xing et al. [9] developed the sum of an exponen-
tial function and a polynomial functionwith an order of 2 to form anoth-
er empirical battery degradationmodel. In the works of He et al. [8] and
Xing et al. [9], particle filtering was used to solve their associated non-
linear state space models and predict lithium-ion battery RUL. Because
particle filtering has strong ability to solve non-linear state space
models by using lots of random particles with their associated weights,
it has beenwidely applied to battery RUL prediction togetherwith other
advanced algorithms, such as particle swarm optimization [10], Gauss-
ian process models [11], support vector regression [12], autoregressive
model [13], kernel smoothing [14], unscented Kalman filtering [15],
spherical cubature Kalman filtering [16], Gauss–Hermite Kalman filter-
ing [17], logistic regression [18], etc.

In the aforementioned prognostic methods, two assumptions are
commonly used [5,8,9,15,16]. The first assumption is that additive
Gaussian noises are used in state space modeling. Specifically, before
the current battery degradation measurement is available, states in
state space modeling are driven by additive Gaussian noises, and pre-
dicted states are assumed to follow the Gaussian distribution. When
the current battery capacitymeasurement is available, an error between
the current measurement and a predicted measurement is assumed to
follow the Gaussian distribution. In other words, the Gaussian distribu-
tion is used in state spacemodeling. Under this assumption, it is unnec-
essary to use particle filtering because Gaussian quadrature [19], such as
unscented transform, Gauss–Hermite quadrature, spherical cubature,
etc., is sufficiently used to calculate the nonlinear projection/function
of the Gaussian distribution. Moreover, the calculation time of Gaussian
quadrature ismuchquick because only a fewdeterministic sigmapoints
sampled from the Gaussian distribution are used in integration required
in dynamic Bayesian inference of state space modeling. Compared with
Gaussian quadrature, particle filtering needs lots of random particles to
approximate integration required in dynamic Bayesian inference of
state space modeling. The second assumption is that noise variances
used in state space modeling are assumed to be fixed. In practice, even
though a same type of lithium-ion batteries is investigated in battery
prognostics, these lithium-ion batteries are heterogeneous andhave dif-
ferent battery degradation paths. Moreover, noise variances have great
influence on state space modeling. If noise variances are too small, it
takes long time to approach true states, and thus estimated states and
measurements are biased. If noise variances are too large, filtering will
suffer divergence. Consequently, heterogeneity of noise variances
should be considered in state spacemodeling to improve RUL prediction
accuracy. More importantly, noise variances should be posteriorly up-
dated when a new battery capacity degradation measurement is
available.

Considering the above two discussions, in this paper, an efficient
prognostic method for battery RUL prediction is proposed. The main
contributions of this paper are summarized as follows. Firstly, fol-
lowing the previous research works, we still use additive Gaussian
noises to drive state and measurement predictions in state space
modeling. As explained previously, Gaussian quadrature is suffi-
ciently used in Gaussian integration required by dynamic Bayesian
inference of state space modeling. To reduce calculation time in-
creased by the large number of random particles in particle filtering,
we use unscented transform as a demonstration of Gaussian quadra-
ture to sample a few deterministic sigma points from the Gaussian
distribution used in state space modeling. Other options include
Gauss–Hermite quadrature, spherical cubature, etc. Secondly, be-
cause unscented transform is able to transmit a few deterministic
sigma points through a non-linear state space model, dynamic
Bayesian inference on noise variances in the framework of Kalman
filtering [20] is still effective in non-linear state space modeling
used in battery RUL prediction. Considering this view, we posteriorly
update noise variances over time when a new battery capacity deg-
radation measurement is available.

The rest of this paper is organized as follows. The problem of state
space modeling of battery RUL prediction is formulated in Section 2.
The proposed prognostic method is presented in Section 3. The results
obtained by using the proposed prognostic method are shown in
Section 4. Moreover, comparisons with other prognostic methods are
conducted in the same section. Conclusions are drawn in the last
section.

2. The problem formulation of state space modeling of battery RUL
prediction in the previous research works

For state space modeling of battery RUL prediction, it is necessary to
establish a state space model as follows:

State function

xk ¼ g xk−1; kð Þ þ vk; ð1Þ

Measurement function

yk ¼ f xk; kð Þ þwk; ð2Þ

where vk is an additive state noise vector at iteration k and it follows the
Gaussian distribution with a mean vector 0 and a covariance matrix
Qk−1; xk−1 is a state vector posteriorly estimated at iteration k − 1;
xk is a predicted state vector at iteration k before the current measure-
ment yk is available; wkis an additive Gaussian measurement noise
with a mean 0 and a variance qk−1

2 at iteration k; g(⋅) and f(⋅) are
linear/non-linear functions. In the previous state spacemodeling of bat-
tery RUL prediction [5,8,9,15,16], the state and measurement functions
shown in Eqs. (1) and (2) are simplified as follows:

State function

xk ¼ xk−1 þ v; ð3Þ

Measurement function

yk ¼ f xk; kð Þ þw: ð4Þ

Themathematical meaning of Eq. (3) is that the predicted state vec-
tor xkdirectly evolves from a prior state vector/posterior state vector
xk−1 at iteration k − 1 by using the Gaussian random walk before the
currentmeasurement yk is available. Obviously, the predicted state vec-
tor xk follows the Gaussian distribution with a mean vectormk−1 and a
covariance matrix Pk−1+Qk−1. Here, mk−1 and Pk−1 are the mean
vector and the covariancematrix of the posterior state vector xk−1 at it-
eration k − 1, respectively. Moreover, in Eq. (3), it is assumed that the
additive state noise vector vk always has a fixed covariance matrix
Qk−1=Q, which is not posteriorly updated over time. The same as-
sumption is applied to the variance qk−1

2 =q2 of the additive Gaussian
measurement noise. For RUL prediction of lithium-ion batteries, the
non-linear function f(⋅) is established by goodness of fit. Some candi-
dates for the non-linear function f(⋅) include an exponential function
[6,15], the sumof two exponential functions [8], the sumof an exponen-
tial function and a polynomial function with an order of 2 [9], etc. The-
oretically, the more the number of states/parameters used in the non-
linear function, the better goodness of fit. However, the increase of the
number of states may cause the overfitting problem and complicate
state space modeling of battery RUL prediction. Therefore, selection of
a proper non-linear function f(⋅) depends on the requirement of users
and battery degradation trends. If the increase of the number of states
only increases goodness of fit a little, it is preferable to use a simpler
function, such as the exponential function, to avoid the overfitting
problem.

In the previous state space modeling of battery RUL prediction, par-
ticle filtering is applied to solve the state space model provided by Eqs.
(3) and (4) so that the posterior distribution of xk can be iteratively es-
timatedwhen the currentmeasurement yk is available. Themain idea of
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