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room temperature, many battery prognostic methods working at a constant discharge rate have been proposed
to predict battery remaining useful life (RUL). However, different discharge rates (DDRs) affect both usable bat-
tery capacity and battery degradation rate. Consequently, it is necessary to take DDRs into consideration when a
battery prognostic method is designed. In this paper, we propose a discharge-rate-dependent battery prognostic
method that is able to track usable battery capacity affected by DDRs in the process of battery degradation and to
predict RUL at DDRs. An experiment was designed to collect accelerated battery life testing data at DDRs, which
are used to investigate how DDRs influence usable battery capacity, to design a discharge-rate-dependent state
space model and to validate the effectiveness of the proposed battery prognostic method. Results show that
the proposed battery prognostic method can work at DDRs and achieve high RUL prediction accuracies at DDRs.
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1. Introduction

Lithium-ion batteries are widely used in hybrid electric vehicles,
consumer electronics, etc. Considering several significant battery capac-
ity degradation factors [1], including storage voltage, environment tem-
perature, discharge rate, depth of discharge, etc., one needs to take these
factors into consideration in battery prognostics and health manage-
ment [2], especially battery remaining useful life (RUL) prediction.
Here, battery RUL can be regarded as how many charge/discharge cycles
are left before battery capacity fails to provide reliable power for electric
systems and products [3].

As of today, many battery prognostic methods have been proposed
to predict battery RUL at a constant discharge rate. Among these battery
prognostic methods, particle filter (PF) based battery prognostic
methods [4-9] have attracted lots of attention because PF provides a
way to solve numerical integration required in non-linear state space
models. Moreover, PF based methods have been demonstrated to be ef-
fective in diagnostics and prognostics of other critical components, such
as bearing [10], gear [11], carrier plate [12], gas turbine [13], aluminum
electrolytic capacitors [14], fatigue crack [15,16], etc. For PF based bat-
tery prognostics, Saha et al. [17] proposed to combine relevance vector
machine and PF so as to predict battery RUL at a constant discharge rate.
In their further comparison study [18], they experimentally demon-
strated that the PF based prognostic method has higher RUL prediction
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accuracies than autoregressive integrated moving average and extend-
ed Kalman filter based prognostic methods. Following the work done
by Saha et al.,, He et al. [19] used a bi-exponential function as an empir-
ical battery degradation model so as to fit battery degradation data at a
constant discharge rate and they experimentally found that the bi-ex-
ponential function has good ability to fit the battery degradation data.
Based on the empirical battery degradation model, they built a state
space model at a constant discharge rate and used PF to posteriorly es-
timate parameters distributions for battery RUL prediction at a constant
discharge rate. To better fit local battery degradation behavior, Xing et
al. [20] combined an exponential function and a polynomial function
with an order of 2 to form an ensemble empirical battery degradation
model and they experimentally demonstrated that the new empirical
battery degradation model is able to predict battery RUL at a constant
discharge rate better than the bi-exponential function based prognostic
method. Since then on, many other researchers have tried to improve
battery RUL prediction accuracies at a constant discharge rate by en-
hancing the performance of PF, including its particle diversity [21,22],
model adaptation [23] and its importance function [24-26].

Even though the aforementioned battery prognostic methods had
good RUL prediction accuracies at a constant discharge rate, these prog-
nostic methods did not consider the influence of discharge rate on bat-
tery degradation. Actually, given a room temperature, discharge rate is
one of the most significant factors to influence battery capacity degrada-
tion [27]. Normally, the higher a discharge rate, the faster a capacity
degradation rate. Moreover, discharge rate affects usable capacity. The
higher a discharge rate, the smaller a usable capacity. And, when a dis-
charge rate is changed from a high rate to a low rate, most ‘lost’ capacity
caused by the high rate is revoked [28]. This is the reason why we use
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usable capacity instead of capacity in this paper to distinguish capacity
influenced by different discharge rates (DDRs). Consequently, it is nec-
essary to take DDRs into consideration when a battery prognostic meth-
od is designed.

In this paper, a discharge-rate-dependent battery prognostic meth-
od is proposed. The main contributions of this paper are highlighted
as follows. Firstly, an experiment was designed to collect four battery
degradation data at DDRs. The design of the experiment aims to inves-
tigate how DDRs affect usable battery capacity. Even though only four
battery degradation samples at DDRs are available for our analyses, it
took one year to collect them and the collection of battery degradation
at DDRs is time-consuming. Secondly, because DDRs influence the
value of usable capacity, it is difficult to directly use some empirical bat-
tery degradation models working at a constant discharge rate, such as
the exponential function [17,18,23,25], the bi-exponential function
[19], the ensemble function [20], etc. to describe battery degradation
at DDRs. It is necessary to develop a more general battery degradation
model working at DDRs. In this paper, we take the exponential function
as an example and extend it to a more general empirical battery degra-
dation model working at DDRs by discovering the relationship between
the amplitude and slope of the exponential function and DDRs. Accord-
ing to our preliminary analyses, the exponential function is good
enough in this paper to describe a battery degradation curve at a specific
discharge rate. If one parameter has a linear relationship with discharge
rate, only four hidden states are required in the state space modeling of
battery degradation at the DDRs, which can be efficiently and posterior-
ly updated by using PF. Thirdly, based on the more general empirical
battery degradation model, a discharge-rate-dependent state space
model is proposed to track usable capacity degradation data at DDRs.
More interestingly, given a constant discharge rate, the discharge-
rate-dependent state space model can be reduced to the state space
model used in [17,18,23,25]. Fourthly, we illustrate how to use PF to
posteriorly estimate the parameter distributions of the discharge-rate-
dependent state space model. Once the parameter distributions of the
discharge-rate-dependent state space model are determined, we are
able to predict battery RUL at DDRs by extrapolating the established
state space model to a discharge-dependent soft failure threshold.
Here, the discharge-rate-dependent soft failure threshold is taken as
80% of initial usable capacity values at DDRs. The main reason why we
are interested in predicting RUL at DDRs is that we are concerned
about how many charge/discharge cycles are left if the current dis-
charge rate is changed to another concerned discharge rate. Battery
RUL prediction at DDRs is able to suggest users when they are not
allowed to use a higher discharge rate instead of the current discharge
rate. According to our literature review, this new idea related to battery
RUL prediction at DDRs is new and seldom reported.

The rest of this paper is outlined as follows. An experiment was de-
signed in Section 2 to collect usable capacity degradation data at DDRs.
In Section 3, to mathematically describe usable capacity degradation
data at DDRs and predict battery RUL at DDRs, the discharge-rate-de-
pendent battery prognostic method is proposed. In Section 4, the effec-
tiveness of the proposed prognostic method is experimentally
validated. Conclusions are drawn in the last section.

2. Design of an experiment for collection of usable lithium-ion bat-
tery capacity degradation data at DDRs

Before the discharge-rate-dependent battery prognostic method is
detailed in Section 3, an experiment was designed to collect lithium-
ion battery degradation data at DDRs. In the experiment, four cylindrical
BAK 18650 battery samples and their specifications are tabulated in
Table 1. The room temperature was kept at an environment tempera-
ture of 25 °C. The battery test bench, composed of an Arbin BT2000 tes-
ter for loading and sampling the batteries, a host computer with an
Arbin MITS Pro Software for on-line experiment control and data re-
cording, and a computer with Matlab R2012b Software for preliminary

Table 1

The specifications of the four battery samples used in the experiment.
Cathode LiFePO,4
Anode Graphite
Rated capacity 1Ah
Upper/lower cut-off voltage 3.6V/2V
End-of-charge current 0.01C
Max continuous discharge current 10C

data analysis, is shown in Fig. 1(a). A profile comprising a sequence of
repetitive 0.5C, 1C, 3C, and 5C constant current discharge regimes was
implemented to collect usable capacity degradation data in the course
of four-cycle rotation aging. The four batteries were recharged with a
schedule recommended by manufacturer, which comprised a 1C con-
stant current charging step followed by a constant voltage charging
step until a cutoff current of C/100 was reached. Fig. 1(b) shows the
measured current and voltage profile in a four-cycle rotation interval.
In the Arbin testing system, the discharge and charge currents were re-
spectively represented by negative and positive values. The accumulat-
ed usable discharge capacity was calculated by integrating the current
over time.

To show the rated capability of a lithium-ion battery, the relation-
ship between the discharge curve and the accumulated usable capacity
is plotted in Fig. 1(c). Clearly, the maximum releasable capacity at 5C is
only 0.92 Ah, which is less than those at the lower discharge rates, espe-
cially 0.5C. Thus, the deliverable usable capacity is reduced if the battery
is discharged at a very high rate. The usable capacity degradation data of
one of the four batteries are plotted in Fig. 2(a), where the peculiar in-
creasing usable capacity data at some initial four-cycle rotations have
been artificially removed for the sake of RUL prediction because these
usable capacity are not sufficiently useful in describing usable capacity
degradation. It was observed that the DDRs have significant impacts
on usable capacity degradation data. The higher a discharge rate, the
smaller usable capacity. Additionally, when a battery was discharged
at a high rate of 5C, it is observed that its associated usable capacity is
more fluctuated. This phenomenon is explained by a high battery sur-
face temperature with a high variation at a discharge rate of 5C. By
attaching a thermocouple to the surface of a battery with a sampling
rate of 1 s, we plot the averages of the battery surface temperatures in
every discharging process in Fig. 2(b), in which it is observed that the
higher a discharge rate, the higher a battery surface temperature.

3. The proposed discharge-rate-dependent prognostic method for
battery RUL prediction at DDRs

In this section, we propose a discharge-rate-dependent prognostic
method which is able to track usable capacity degradation data at
DDRs and to predict battery RUL at DDRs. In the proposed discharge-
rate-dependent prognostic method, one of the most important key
steps is to construct a discharge-rate-dependent state space model so
as to describe usable capacity degradation data at the DDRs including
0.5C, 1C, 3C and 5C as shown in Fig. 2(a). Here, batteries 1 to 3 are
used to provide the historical batteries data and battery 4 is used to pro-
vide the testing degradation data. Using the historical degradation data
at the DDRs have the following three purposes. Firstly, because a phys-
ical battery degradation model is seldom reported, it is necessary to use
the historical battery degradation data at the DDRs to establish an em-
pirical battery degradation model. Secondly, it is necessary to extend
the empirical battery degradation model to a more general empirical
battery degradation model working at the DDRs. Thirdly, based on the
more general empirical battery degradation model, a discharge-rate-de-
pendent state space model is constructed. Moreover, its parameters are
initialized by the historical battery degradation data.

To achieve the first purpose, a discharge-rate-dependent soft failure
threshold X¢hreshola = 1.093 — 0.01665 x D is firstly defined. Here, D is
the discharge rate. The discharge-rate-dependent soft failure threshold
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