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We propose a new data-driven prognostic method based on the interacting multiple model particle filter
(IMMPF) for determining the remaining useful life (RUL) of lithium-ion (Li-ion) batteries and the probability
distribution function (PDF) of the associated uncertainty. The method applies the IMMPF to different state
equations. Modeling the battery capacity degradation is very important for predicting the RUL of Li-ion batteries.
In this study, improvements are made on various Li-ion battery capacity models (i.e., polynomial, exponential,
and Verhulst models). Further, three different one-step state transition equations are developed, and the
IMMPF method is applied to estimate the RUL of Li-ion batteries with the use of the three improved models.
The PDF of the predicted RUL is obtained by combining the PDFs obtained with each individual model. We
conduct four case studies to validate the proposed method. The results are as follows: (1) the three improved
models require fewer parameters than the original models, (2) the proposed prognostic method shows stable
and high prediction accuracy, and (3) the proposed method narrows the uncertainty PDF of the predicted RUL
of Li-ion batteries.
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1. Introduction

Lithium-ion (Li-ion) batteries have become prevalent in various de-
vices ranging from tiny Bluetooth headsets and cell phones to laptops
and tablet computers. These batteries efficiently cater to the energy
needs of these devices. When compared with other types of batteries,
Li-ion batteries have exceptionally high energy densities, long lifetimes,
and stable electrochemical properties. Further, Li-ion batteries can store
electrical energywith slow energy losswhen not in use, and they do not
exhibit a memory effect [1].

Meanwhile, the development of hybrid electric vehicles (HEVs) and
military unmanned aerial vehicles (UAVs) has attracted increasing at-
tention. Both these automotive technologies rely on Li-ion batteries
[2], and in this context, the failure of Li-ion batteries can lead to opera-
tion loss, downtime, and even catastrophic system failure. Currently,
batteries are considered to be an unreliable power source because
they tend to exhibit an exponential decay of capacity after passing the
point of failure. In this regard, the remaining useful life (RUL) of a bat-
tery is defined as the time interval from the time of observation to the
time of battery failure [2]. From the perspective of practical application,
detecting the performance degradation, successfully predicting the end
of life (EOL) or remaining useful life (RUL) of Li-ion batteries, and ulti-
mately preventing fatal failure is imperative [3]. With particular regard

to Li-ion batteries, the RUL of a Li-ion battery is defined as the time in-
terval from themoment of consideration to the end of the battery's use-
ful life [4].

Prognostics and health management (PHM) is a discipline that en-
compasses many technologies and methods to accurately assess the
lifetimes of products in order to ensure and maintain normal operation
of systems and equipment [5]. PHM for batteries has garnered consider-
able attention in studies on various performance metrics [6–9]. Tradi-
tionally, prognostics can be implemented via either physics-based or
data-driven approaches. Model-based approaches [10] typically involve
building mathematical functions to describe the physics and failure
modes of a system and thus incorporate a physical understanding of
the system into estimating the RUL. The empirical model forms an inte-
gral part of model-based approaches. Models in the model-based ap-
proaches are constructed from empirical models, analytical models,
physical models, and so on. However, accurate analytical models are
usually difficult to develop for complex dynamic systems, particularly
ones that operate in noisy and uncertain environments [11]. With re-
gard to batteries, the construction of an accurate analytical model relies
on knowledge of a battery's life cycle loading conditions, material prop-
erties, and failuremechanism, and the process tends to be computation-
ally complex. On the other hand, data-driven approaches [12] are not
based on accurate modeling of the physics of a system; instead, they
mine hidden information through various data analysis methods. With
regard to batteries, the main advantage of data-driven approaches is
that they do not require extensive knowledge on battery chemistry
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and failure mechanisms. Prognostic data are derived from measurable
parameters such as voltage, current, and temperature.

Some data-driven approaches for predicting the RUL of Li-ion batte-
ries include auto-regressive moving average (ARMA) [13,14], neural
network (NN) [11,15], fuzzy logic [16], support vector machine (SVM)
[17], relevance vector machine (RVM) [18–20], and other intelligent
computation methods [21,22,25–28]. The ARMA relies more on histori-
cal data and is a type of linear model prediction method. It is more suit-
able for point estimation and not multi-step prediction. The ARMA has
low accuracy for long-term prediction. NNs offer the advantages of a
strong fault tolerance, strong memory function, adaptability, and self-
learning. However, they are more suitable for point estimation and af-
ford low precision with multi-step forecasting. The NN approach has a
strong dependency on the historical data. Training parameters will not
have generalization capability once new data are acquired, which can
cause predictions to diverge. Fuzzy logic has certain features that are
similar to those of the NNmethod. Fuzzy logic methods allow a certain
level of uncertainty and ambiguity in processing incomplete and noisy
data, and they require appropriate design of themembership functions.
Meanwhile, the SVM can be directly usedwith small samples and high-
dimensional data for nonlinear performance degradation data classifi-
cation andprediction.However, it has lowmulti-step prediction accura-
cy. The RVM has not only the advantages of SVM but also the ability to
describe the prediction uncertainty. Its disadvantages include a high
level of computational complexity, large operational storage resources,
and poor online operation in real-time. Here, we remark that intelligent
computation approaches are practical forecasting methods that make
the derivation of a physical model unnecessary.

The factor of uncertainty can be one of the main challenges in
predicting the battery health [29]. Difficulties are posed by the uncer-
tainties associated with predicting the RUL of Li-ion batteries, including
operational and environmental factors, unit-to-unit variation, measure-
ment noise, modeling inconsistencies, and degraded sensor fidelity [30].
Therefore, themanagement of the uncertainty of the battery health also
influences the RUL prediction [31].

Amethod involving the use of a particle filter (PF) is typically used to
determine the RUL uncertainty of a Li-ion battery. A PF is suitable for
solving nonlinear, non-Gaussian, and time-varying parameters for sys-
tem prediction, and there is no need for model training [32]. Many re-
searchers have improved on the PF method [14,21,22,27,28,] or the
state function [13,14,19,31,32,33] to reduce the RUL uncertainty. Many
studies have demonstrated that the PF approach is a comparatively
good RUL prediction method. The PF framework uses a learning
model, statistical estimates of noise, and anticipated operational condi-
tions to provide estimates of the RUL in the form of a probability density
function. Predicting the RUL of Li-ion batteries requires estimating the
nonlinear state of the capacity of the Li-ion battery via the use of offline
battery-capacity data. PF is suitable for estimating the nonlinear system
states, and it can significantly contribute to RUL prediction for Li-ion
batteries.

As regards PF-based methods, Liu et al. proposed a regularized
auxiliary PF approach for system state estimation and battery life
prediction [25]. This approach was intended as a more reliable engi-
neering tool for system state estimation and forecasting. In this
method, empirical density regularization is implemented in the aux-
iliary PF, and samples are drawn from a continuous distribution to

diversify the particles. However, this empirical model requires the
impedance to be measured, which is expensive and time-
consuming. Miao et al. presented an improved PF algorithm to pre-
dict the battery RUL: the unscented particle filter (UPF). The UPF
can predict the actual RUL with an error margin of less than 5%
[26]. However, the battery degradation model is obtained empirical-
ly. This model is an exponential model and requires the initialization
of four parameters. The selection and initialization of the model pa-
rameters are important for predicting the RUL. In this regard, Xing
et al. developed a model to predict the RUL of Li-ion batteries that
combines an empirical exponential model and polynomial regres-
sion model [31]. Further, Saha et al. proposed an empirical model
based on a PF framework to predict the RUL of Li-ion batteries [21].
The basis for their model is linked to the internal processes of Li-
ion batteries, and the model was validated by using experimental
data. The experimental data of these internal processes are difficult
to obtain owing to the complicated internal structure of the battery.
He et al. proposed amethod for estimating the RUL of Li-ion batteries
based on the Dempster–Shafer theory (DST) and Bayesian Monte
Carlo (BMC) method [22]. In this method, an empirical model
consisting of two exponential functions is used to model the battery
capacity degradation trends. The initial model parameters are ob-
tained with the DST. The BMC is used to update the model parame-
ters. The initial parameters differ depending on the experiments
from which they are obtained. Determining the initial values of
model parameters throughmany experimental results is impractical,
and therefore, there is uncertainty in the predicted results.

The various capacity degradation models incorporated in the
above methods use algorithms that are adapted to specific data
sources, battery types, internal battery structures, etc. There are
three types of typical capacity degradation models based on the
data-driven approach: the polynomial [31], exponential [28], and
Verhulst models [33]. The polynomial model yields the best fit in
the linear stage of capacity degradation, whereas the exponential
model yields the best fit in the nonlinear stage of capacity degrada-
tion. The polynomial and exponential models are both empirical
models. The Verhulst model was inspired by a biological forecasting

Table 1
Properties of the experimental battery pack.

Properties of the battery A1 A2 A3 A4

Rated capacity 0.9 A·h 0.9 A·h 0.9 A·h 0.9 A·h
Ambient temperature [25–30 °C] [25–30 °C] [25–30 °C] [25–30 °C]
Constant charging current 0.45A 0.45A 0.45A 0.45A
Constant discharging current 0.45A 0.45A 0.45A 0.45A
FT 0.72 A·h 0.72 A·h 0.72 A·h 0.72 A·h
Experimental full cycles 250 200 140 65

Fig. 1.Capacity degradation trends of four different batteries during full cycle (FT= failure
threshold).

Table 2
Goodness of fit of models 1 and 2.

No. of battery

RSS
Radj
2

Model 1 Model 2 Model 1 Model 2

A1 0.1895 0.007644 0.9279 0.9971
A2 0.01643 0.005586 0.9737 0.991
A3 0.04184 0.01714 0.8813 0.951
A4 0.02162 0.009709 0.9752 0.9887
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Image of Fig. 1


Download English Version:

https://daneshyari.com/en/article/4971506

Download Persian Version:

https://daneshyari.com/article/4971506

Daneshyari.com

https://daneshyari.com/en/article/4971506
https://daneshyari.com/article/4971506
https://daneshyari.com

