Microelectronics Reliability 72 (2017) 85-89

Contents lists available at ScienceDirect

MICROELECTRONICS
RELIABILITY

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

A method to protect Cuckoo filters from soft errors

@ CrossMark

P. Reviriego **, S. Pontarelli ®, J.A. Maestro 2

2 ARIES Research Center, Universidad Antonio de Nebrija, C. Pirineos 55, Madrid, Spain
b CNIT- National Inter-University Consortium for Telecommunications, University of Rome “Tor Vergata” Via del Politecnico 1, 00133, Rome, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 14 December 2016

Received in revised form 17 March 2017
Accepted 19 March 2017

Available online xxXxx

Soft errors that corrupt the value of bits stored in registers or memories are a major issue for modern electronic
systems. To ensure that they do not cause failures, error detection and correction codes are commonly used to
protect memories. When memories are used for a specific application, sometimes it is possible to optimize the
protection based on the knowledge of the application. One example is the memories used in network devices
for packet processing. In particular, the protection of approximate membership check structures such as Bloom
filters has been recently studied showing that it is possible to optimize the protection. Cuckoo filters are an alter-
native to Bloom filters for approximate membership check that has been recently proposed. Cuckoo filters are in-
teresting as they are competitive in terms of memory usage for low false positive rates and also support the
removal of elements. In this paper, the protection of Cuckoo filters against soft errors is studied showing that it
can be enhanced by exploiting its structure and using the knowledge of the effects on an error in a Cuckoo filter.

Keywords:

Soft errors
Cuckoo filters
Error correction

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Soft errors caused by radiation are a major concern for modern elec-
tronic circuits [1]. Soft errors can alter the bits stored in memories and
registers causing data corruption and failures. In applications where re-
liability is important, memories are typically protected with either a
parity bit to detect single bit errors or with a Single Error Correction
Double Error Detection (SEC-DED) code to correct single bit errors and
detect double errors [2]. This is the case for network devices that need
high levels of availability and reliability [3].

In network devices a variety of internal memories are used to store
data needed for example for packet routing and classification. For exam-
ple, Bloom filters [4] are widely used in networking to perform approx-
imate membership checks and speed up packet processing. Recently,
Cuckoo filters have been proposed as an alternative to Bloom filters
[5]. They are attractive as they are more efficient than Bloom filters in
terms of memory usage when the false positive rate is low. Another in-
teresting feature of Cuckoo filters is that they support the removal of
elements.

In any case, both Bloom and Cuckoo filters make use of memories to
store information that is then checked when a packet arrives. As men-
tioned before, those memories can be protected with either a parity
bit or a SEC-DED code. The protection of Bloom filters against soft errors
has been studied in [6,7]. The first work focuses on the protection of the
hash functions used in the Bloom filter while the second deals with the
protection of the memories. In particular, it is shown that the protection

* Corresponding author.
E-mail address: previrie@nebrija.es (P. Reviriego).

http://dx.doi.org/10.1016/j.microrel.2017.03.040
0026-2714/© 2017 Elsevier Ltd. All rights reserved.

of the memories can be optimized by exploiting the asymmetric effect
of errors in the Bloom filter. A Bloom filter based approximate member-
ship check by nature can produce false positives but not false negatives.
Therefore, any soft error that only causes false positives produces only a
degradation of the filter but does not change its fundamental behavior.
On the other hand, an error that can create false negatives changes the
nature of the filter and should be corrected. This was exploited in [7]
to perform only error detection and when an error is detected on a
memory word, it is set to all ones such that any false negative is avoided
and the error only produces a small increase in the false positive rate of
the filter. The protection of Fast Counting Bloom filters has also been op-
timized recently [8]. In this case a method to provide error detection
when the memory used for the filter has no protection is presented. In
this paper, the protection of Cuckoo filters is studied showing how it is
also possible to optimize their protection based on the different effects
that errors have on the filter and by using the filter structure to imple-
ment a parity bit with no memory cost.

2. Cuckoo filter overview

A Cuckoo filter is built around an array of m buckets each of which
can hold up to b fingerprints. This array is typically stored in memory
and thus prone to suffer soft errors. The fingerprints are obtained from
the elements when they are stored in the filter using a hash function
fp = hx). A new element can be inserted on buckets a; = hy(x) or a,
= a; xor hy(fp) and when both buckets are full, an element stored in
one of the buckets is removed and the new element is inserted on its
place. Then the removed element is inserted and the process continues
possibly moving several elements until an empty place is found [5]. To

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2017.03.040&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2017.03.040
mailto:previrie@nebrija.es
Journal logo
http://dx.doi.org/10.1016/j.microrel.2017.03.040
Unlabelled image
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/microrel

86 P. Reviriego et al. / Microelectronics Reliability 72 (2017) 85-89

search for an element x, first its fingerprint is computed using a hash
function fp = he(x). Then bucket a; is read and the fingerprints stored
in that bucket are compared with fp. When there is a match the opera-
tion ends. If there is no match, then bucket a, is read and the finger-
prints stored in that bucket are compared with fp. In this case, the
operation ends with a match or with a miss as only two buckets are
accessed. The removal operation is the same as a search but once
found, the stored fingerprint is removed. A diagram of a Cuckoo filter
is shown on Fig. 1. In this case, b = 4 as proposed in [5]. This configura-
tion can achieve approximately 95% occupancy before the insertion of
an element fails.

The false positive rate (fpr) of a Cuckoo filter can be easily estimated.
When fbits are used for the fingerprints and the occupancy is [, the rate
will be approximately:

8-1
ﬁ9r=2— (1)

This is obtained as on average the search will compare against 8-1
fingerprints each having a probability of giving a false positive of 27,

3. Protection of Cuckoo filters

A soft error that affects the memory used to store the fingerprints of
a Cuckoo filter will corrupt one or more fingerprints. Let us assume for
now that only single bit errors occur and therefore only one fingerprint
is affected by the error. A corrupted fingerprint has the following effects
when searching for an element in the Cuckoo filter:

1. It will create false positives for elements that match the corrupted
fingerprint.

2. It will create false negatives for elements that matched the original
fingerprint and now do not match the corrupted fingerprint.

As discussed before, having more false positives degrades the perfor-
mance of the filter but does not change its nature. On the other hand
having false negatives does change the expected filter behavior and
should be avoided. Therefore, to avoid false positives, it would seem
that an error correction code such as a SEC-DED code is needed so that
the bit in error can be corrected. These codes require a number of addi-
tional bits per memory word and thus increase the cost. The read and
write operations also need to perform a decoding and encoding opera-
tion that add delay and power over an unprotected memory.

stored
fingerprints

hi(x)

as = hy(x)

fo = hy(x)

/

a, = axor hy(fp)

Fig. 1. Illustration of a Cuckoo filter.

Alower cost protection would be the use of a parity bit but that only
detect errors. Let us assume that the memory that stores the finger-
prints is protected with a parity bit. Then, when a memory word is
read during a search operation and a parity error is detected, a possible
solution is to return positive regardless of the contents of the word. This
strategy is similar to the one proposed in [7] for Bloom filters and en-
sures that the error will not create false negatives at the cost of increas-
ing the false positive rate. Assuming that a memory word corresponds
to a bucket in the Cuckoo filter, the increment will be approximately
2/m as now one of the m positions always returns a positive. This incre-
ment in the false positive rate would be negligible for large filters. The
same scheme could be applied to a memory protected using a SEC-
DED code when a double error is detected. However, more refined
schemes can be designed to minimize the impact of soft errors on the
filter false positive rate. Two such schemes are presented in the follow-
ing subsections the first providing protection against single errors and
the second against double errors.

3.1. Single Error Protection (SEP) scheme

To protect against single errors, one option is to use a memory that
has a parity bit and when there is a parity error use distance one com-
parisons for the fingerprints. Such comparisons give a match when the
fingerprints are the same or they differ only in one bit. Therefore, if a
stored fingerprint has suffered an error and it is compared with its initial
value, it would give a match as there will only be one bit that is different
(the bit that has changed by the error). Therefore, this scheme cannot
produce false negatives. An f bit fingerprint will now match also f dis-
tance one values (corresponding to an error on each of its bits). This
causes an increment in the false positive rate of approximately:

4.1-f
> 2)

when that bucket is selected on a query. As each query selects two
buckets, the probability that the bucket in error is selected will be ap-
proximately 2/m. Therefore the increment due to one error will be ap-
proximately:

3)

To ensure that soft errors have a negligible effect on the overall false
positive rate, the increment given by Eq. (3) has to be much smaller
than the initial value given by Eq. (1) which occurs when:

o> f @)

This is the case in most practical scenarios as the number of finger-
print bits fis small with typical values in the rage of 8 to 16 bits while
the number of buckets in the filter is large with values easily exceeding
16 K buckets and reaching several millions in some cases [5]. The previ-
ous calculations have been done considering that there is only one soft
error in the memory at a given point in time. This is a reasonable as-
sumption as soft errors are rare events that occur with low frequency
in terrestrial applications. For example, a per bit soft error rate of 8.8
+ 1072 per year has been estimated for some 65 nm memories [9]. In
the case that more than one soft error affect the memory, the condition
to ensure that the impact on the false positive rate is small will be:

m>>f .e (5)

where e is the number of soft errors.

The distance one comparison requires a more complex hardware
than an exact match comparison but as will be shown later it is simpler
than a SEC-DED decoder. In the rest of the paper, this refined scheme
based on distance one comparisons is used.

Image of Fig. 1

Download English Version:

https://daneshyari.com/en/article/4971528

Download Persian Version:

https://daneshyari.com/article/4971528

Daneshyari.com

https://daneshyari.com/en/article/4971528
https://daneshyari.com/article/4971528
https://daneshyari.com

