ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Applied Soft Computing 8 (2008) 16431653

Applied St
Computing

www.elsevier.com/locate/asoc

Solving shortest path problem using particle swarm optimization

Ammar W. Mohemmed, Nirod Chandra Sahoo *, Tan Kim Geok

Faculty of Engineering and Technology, Multimedia University, 75450 Melaka, Malaysia

Received 22 August 2006; received in revised form 25 December 2007; accepted 15 January 2008
Available online 19 January 2008

Abstract

This paper presents the investigations on the application of particle swarm optimization (PSO) to solve shortest path (SP) routing problems. A
modified priority-based encoding incorporating a heuristic operator for reducing the possibility of loop-formation in the path construction process
is proposed for particle representation in PSO. Simulation experiments have been carried out on different network topologies for networks
consisting of 15-70 nodes. It is noted that the proposed PSO-based approach can find the optimal path with good success rates and also can find
closer sub-optimal paths with high certainty for all the tested networks. It is observed that the performance of the proposed algorithm surpasses
those of recently reported genetic algorithm based approaches for this problem.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Shortest path problem; Particle swarm optimization; Path encoding

1. Introduction

The shortest path (SP) problem concerns with finding the
shortest path from a specific origin to a specified destination in a
given network while minimizing the total cost associated with
the path. This problem has widespread applications. Some
important applications of the SP problem include vehicle
routing in transportation systems [l], traffic routing in
communication networks [2] and path planning in robotic
systems [3]. Furthermore, the shortest path problem also has
numerous variations such as the minimum weight problem, the
quickest path problem, and so on.

The SP problem has been investigated extensively. The
well-known algorithms for solving this problem include the
Bellman’s dynamic programming algorithm for directed
networks, the Dijkstra labeling algorithm and Bellman—Ford
successive approximation algorithm for networks with non-
negative cost coefficients. The details of these algorithms can
be found in [4]. These traditional algorithms have major
shortcomings; firstly, they are not suitable for networks with
negative weights of the edges, i.e., in communication
networks, the link weights represent the transmission line
capacity and negative weights correspond to links with gain

* Corresponding author: Present address: Department of Electrical Engineer-
ing, Indian Institute of Technology, Kharagpur 721302, India.
Tel.: +91 3222 283052.
E-mail address: ncsahoo@ee.iitkgp.ernet.in (N.C. Sahoo).

1568-4946/$ — see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.as0c¢.2008.01.002

rather than loss. Secondly, the algorithms search only for the
shortest route, but they cannot determine any other similar/
non-similar short routes (which is commonly referred to as the
kth SP problem). Thirdly, they exhibit high computational
complexity for real-time communications involving rapidly
changing network topologies such as wireless ad hoc networks.
Therefore, new techniques have been continuously under
investigation.

Artificial neural networks (ANN) have been examined to
solve the SP problem relying on their parallel architecture to
provide a fast solution [5-7]. However, the ANN approach has
several limitations. These include the complexity of the
hardware which increases considerably with increasing number
of network nodes; at the same time, the reliability of the
solution decreases. Secondly, they are less adaptable to
topological changes in the network graph [7], including the
cost of the arcs. Thirdly, the ANNs do not consider sub-optimal
paths. Among other approaches for this problem, the powerful
evolutionary programming techniques have considerable
potential to be investigated in the pursuit for more efficient
algorithms because the SP problem is basically an optimal
search problem. In this direction, genetic algorithm (GA) has
shown promising results [8—11]. The most recent notable
results have been reported in [10]. Their algorithm shows better
performance compared to those of ANN approach and
overcomes the limitations mentioned above.

It is apparent that there is always a great need for more
efficient optimization algorithms for the SP problem. Among the

mailto:ncsahoo@ee.iitkgp.ernet.in
http://dx.doi.org/10.1016/j.asoc.2008.01.002

1644 A.W. Mohemmed et al./Applied Soft Computing 8 (2008) 1643—-1653

notable algorithms for path finding optimization problems in
network graphs, successful use of GA and Tabu Search (TS) has
been reported [12-14]. The success of these evolutionary
programming approaches promptly inspires investigative studies
on the use of other similar (and possibly more powerful)
evolutionary algorithms for this problem. Particle Swarm
Optimization is one such evolutionary optimization technique
[15], which can solve most of the problems solved by GA with
less computation cost [16]. It is to be noted that GA and TS
demand expensive computational cost. Some more comparative
studies of the performances of GA and PSO have also been
reported [17-20]. All these studies have firmly established
similar effectiveness of PSO compared to GA. Even for some
applications, it has been reported that the PSO performs better
than other evolutionary optimization algorithms in terms of
success rate and solution quality. The most attractive feature of
PSO is that it requires less computational bookkeeping and,
generally, a few lines of implementation codes. The basic
philosophy and science behind PSO is based on the social
behavior of a bird flock and a fish school etc. Because of the
specific algorithmic structure of PSO (updating of position and
velocity of particles in a continuous manner), PSO has been
mainly applied to many continuous optimization problems with
few attempts for combinatorial optimization problems. Some of
the combinatorial optimization problems that have been
successfully solved using PSO are: task assignment problem
[21], traveling salesman problem [22,23], sequencing problem
[24] and permutation optimization problem [25], etc.

To the best knowledge of the authors, there is no reported
work on the use of PSO for solving the core shortest path
problem without any use of the classical algorithms such as the
Dijkstra and Bellman—Ford algorithms. The purpose of this
paper is to investigate on the applicability and efficiency of PSO
for this problem. In this regard, this paper reports the use of
particle swarm optimization to solve the shortest path problem,
where a modified indirect encoding is used to represent the
particle (position). In addition, a novel heuristic operator has
been used for reducing the possibility of loop formation during
potential path constructions (search procedure) from an origin
node to a specific destination node in the network graph. The
proposed algorithm has been tested by exhaustive simulation
experiments on various random network topologies. The
analysis of the results indicates the superiority of the PSO-
based approach over those using GA [10,11].

The paper is organized as follows. In Section 2, PSO
paradigm is briefly discussed. The particle encoding mechan-
ism is presented Section 3 followed by the overall flow of the
PSO algorithm for solving the SP problem being provided in
Section 4. The results from computer simulation experiments
are discussed in Section 5. Section 6 concludes the paper.

2. Particle swarm optimization: a brief overview

Particle swarm optimization is a population based stochastic
optimization technique inspired by the social behavior of bird
flock (and fish school, etc.), as developed by Kennedy and
Eberhart [15]. As a relatively new evolutionary paradigm, it has

grown in the past decade and many studies related to PSO have
been published [26]. The algorithmic flow in PSO starts with a
population of particles whose positions, that represent the
potential solutions for the studied problem, and velocities are
randomly initialized in the search space. The search for optimal
position (solution) is performed by updating the particle
velocities, hence positions, in each iteration/generation in a
specific manner as follows. In every iteration, the fitness of each
particle’s position is determined by some defined fitness
measure and the velocity of each particle is updated by keeping
track of two “best” positions. The first one is the best position
(solution) a particle has traversed so far. This value is called
pBest. Another “best’ value is the best position (solution) that
any neighbor of a particle has traversed so far. This best value is
a neighborhood best and is called nBest. When a particle takes
the whole population as its neighborhood, the neighborhood
best becomes the global best and is accordingly called gBest. A
particle’s velocity and position are updated as follows.

Vig = Via + c171(bia — Xia) + coara (bl — xia); i = 1,2, ..., Ny
and d=1,2,....D)

Xig = Xig + Via)

where c¢; and ¢, are positive constants, called acceleration
coefficients, Ny is the total number of particles in the swarm, D
is the dimension of problem search space, i.e., number of
parameters of the function being optimized, r; and r, are
two independently generated random numbers in the range
[0,1] and “n” represents the index of the best particle in the
neighborhood of a particle. The other vectors are defined as:
X; = [x;1, X, ..., X;p] is the position of ith particle; v; =
[vi, vi2, - - ., vip] is the velocity of ith particle; b, = [b;1, bp,

.., bip] is the best position of the ith particle (pBest;), and
b = [b},b}, ..., b)) is the best position found by the neigh-
borhood of the particle i (nBest;). The pseudo-codes for general
algorithmic flow of PSO are listed in Fig. 1.

Eq. (1) calculates a new velocity for each particle based on
its previous velocity, the particle’s position at which the best
possible fitness has been achieved so far, and the neighbors’
best position achieved. Eq. (2) updates each particle’s position
in the solution hyperspace.c; and ¢, are two learning factors,
which control the influence of pBest and nBest on the search
process. In all initial studies of PSO, both ¢ and ¢, are taken to
be 2.0 yielding good results [15]. However, in most cases, the
velocities quickly attain very large values, especially for
particles far from their global best. As a result, particles have
larger position updates with particles leaving boundary of the
search space. To control the increase in velocity, velocity
clamping is used in Eq. (1). Thus, if the right side of Eq. (1)
exceeds a specified maximum value V7%, then the velocity on
that dimension is clamped to VJ'®*. Many improvements have
been incorporated into this basic algorithm. A review of these
modifications can be seen in [27].

The commonly used PSOs are either global version or local
version of PSO. In global version, all other particles influence the
velocity of a particle, while in the local version of PSO, selected

Download English Version:

https://daneshyari.com/en/article/497158

Download Persian Version:

https://daneshyari.com/article/497158

Daneshyari.com

https://daneshyari.com/en/article/497158
https://daneshyari.com/article/497158
https://daneshyari.com

