
Solving shortest path problem using particle swarm optimization

Ammar W. Mohemmed, Nirod Chandra Sahoo *, Tan Kim Geok

Faculty of Engineering and Technology, Multimedia University, 75450 Melaka, Malaysia

Received 22 August 2006; received in revised form 25 December 2007; accepted 15 January 2008

Available online 19 January 2008

Abstract

This paper presents the investigations on the application of particle swarm optimization (PSO) to solve shortest path (SP) routing problems. A

modified priority-based encoding incorporating a heuristic operator for reducing the possibility of loop-formation in the path construction process

is proposed for particle representation in PSO. Simulation experiments have been carried out on different network topologies for networks

consisting of 15–70 nodes. It is noted that the proposed PSO-based approach can find the optimal path with good success rates and also can find

closer sub-optimal paths with high certainty for all the tested networks. It is observed that the performance of the proposed algorithm surpasses

those of recently reported genetic algorithm based approaches for this problem.

2008 Elsevier B.V. All rights reserved.

Keywords: Shortest path problem; Particle swarm optimization; Path encoding

1. Introduction

The shortest path (SP) problem concerns with finding the

shortest path from a specific origin to a specified destination in a

given network while minimizing the total cost associated with

the path. This problem has widespread applications. Some

important applications of the SP problem include vehicle

routing in transportation systems [1], traffic routing in

communication networks [2] and path planning in robotic

systems [3]. Furthermore, the shortest path problem also has

numerous variations such as the minimum weight problem, the

quickest path problem, and so on.

The SP problem has been investigated extensively. The

well-known algorithms for solving this problem include the

Bellman’s dynamic programming algorithm for directed

networks, the Dijkstra labeling algorithm and Bellman–Ford

successive approximation algorithm for networks with non-

negative cost coefficients. The details of these algorithms can

be found in [4]. These traditional algorithms have major

shortcomings; firstly, they are not suitable for networks with

negative weights of the edges, i.e., in communication

networks, the link weights represent the transmission line

capacity and negative weights correspond to links with gain

rather than loss. Secondly, the algorithms search only for the

shortest route, but they cannot determine any other similar/

non-similar short routes (which is commonly referred to as the

kth SP problem). Thirdly, they exhibit high computational

complexity for real-time communications involving rapidly

changing network topologies such as wireless ad hoc networks.

Therefore, new techniques have been continuously under

investigation.

Artificial neural networks (ANN) have been examined to

solve the SP problem relying on their parallel architecture to

provide a fast solution [5–7]. However, the ANN approach has

several limitations. These include the complexity of the

hardware which increases considerably with increasing number

of network nodes; at the same time, the reliability of the

solution decreases. Secondly, they are less adaptable to

topological changes in the network graph [7], including the

cost of the arcs. Thirdly, the ANNs do not consider sub-optimal

paths. Among other approaches for this problem, the powerful

evolutionary programming techniques have considerable

potential to be investigated in the pursuit for more efficient

algorithms because the SP problem is basically an optimal

search problem. In this direction, genetic algorithm (GA) has

shown promising results [8–11]. The most recent notable

results have been reported in [10]. Their algorithm shows better

performance compared to those of ANN approach and

overcomes the limitations mentioned above.

It is apparent that there is always a great need for more

efficient optimization algorithms for the SP problem. Among the

www.elsevier.com/locate/asoc

Available online at www.sciencedirect.com

Applied Soft Computing 8 (2008) 1643–1653

* Corresponding author: Present address: Department of Electrical Engineer-

ing, Indian Institute of Technology, Kharagpur 721302, India.

Tel.: +91 3222 283052.

E-mail address: ncsahoo@ee.iitkgp.ernet.in (N.C. Sahoo).

1568-4946/$ – see front matter # 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2008.01.002

mailto:ncsahoo@ee.iitkgp.ernet.in
http://dx.doi.org/10.1016/j.asoc.2008.01.002

notable algorithms for path finding optimization problems in

network graphs, successful use of GA and Tabu Search (TS) has

been reported [12–14]. The success of these evolutionary

programming approaches promptly inspires investigative studies

on the use of other similar (and possibly more powerful)

evolutionary algorithms for this problem. Particle Swarm

Optimization is one such evolutionary optimization technique

[15], which can solve most of the problems solved by GA with

less computation cost [16]. It is to be noted that GA and TS

demand expensive computational cost. Some more comparative

studies of the performances of GA and PSO have also been

reported [17–20]. All these studies have firmly established

similar effectiveness of PSO compared to GA. Even for some

applications, it has been reported that the PSO performs better

than other evolutionary optimization algorithms in terms of

success rate and solution quality. The most attractive feature of

PSO is that it requires less computational bookkeeping and,

generally, a few lines of implementation codes. The basic

philosophy and science behind PSO is based on the social

behavior of a bird flock and a fish school etc. Because of the

specific algorithmic structure of PSO (updating of position and

velocity of particles in a continuous manner), PSO has been

mainly applied to many continuous optimization problems with

few attempts for combinatorial optimization problems. Some of

the combinatorial optimization problems that have been

successfully solved using PSO are: task assignment problem

[21], traveling salesman problem [22,23], sequencing problem

[24] and permutation optimization problem [25], etc.

To the best knowledge of the authors, there is no reported

work on the use of PSO for solving the core shortest path

problem without any use of the classical algorithms such as the

Dijkstra and Bellman–Ford algorithms. The purpose of this

paper is to investigate on the applicability and efficiency of PSO

for this problem. In this regard, this paper reports the use of

particle swarm optimization to solve the shortest path problem,

where a modified indirect encoding is used to represent the

particle (position). In addition, a novel heuristic operator has

been used for reducing the possibility of loop formation during

potential path constructions (search procedure) from an origin

node to a specific destination node in the network graph. The

proposed algorithm has been tested by exhaustive simulation

experiments on various random network topologies. The

analysis of the results indicates the superiority of the PSO-

based approach over those using GA [10,11].

The paper is organized as follows. In Section 2, PSO

paradigm is briefly discussed. The particle encoding mechan-

ism is presented Section 3 followed by the overall flow of the

PSO algorithm for solving the SP problem being provided in

Section 4. The results from computer simulation experiments

are discussed in Section 5. Section 6 concludes the paper.

2. Particle swarm optimization: a brief overview

Particle swarm optimization is a population based stochastic

optimization technique inspired by the social behavior of bird

flock (and fish school, etc.), as developed by Kennedy and

Eberhart [15]. As a relatively new evolutionary paradigm, it has

grown in the past decade and many studies related to PSO have

been published [26]. The algorithmic flow in PSO starts with a

population of particles whose positions, that represent the

potential solutions for the studied problem, and velocities are

randomly initialized in the search space. The search for optimal

position (solution) is performed by updating the particle

velocities, hence positions, in each iteration/generation in a

specific manner as follows. In every iteration, the fitness of each

particle’s position is determined by some defined fitness

measure and the velocity of each particle is updated by keeping

track of two ‘‘best’’ positions. The first one is the best position

(solution) a particle has traversed so far. This value is called

pBest. Another ‘‘best’’ value is the best position (solution) that

any neighbor of a particle has traversed so far. This best value is

a neighborhood best and is called nBest. When a particle takes

the whole population as its neighborhood, the neighborhood

best becomes the global best and is accordingly called gBest. A

particle’s velocity and position are updated as follows.

vid ¼ vid þ c1r1ðbid � xidÞ þ c2r2ðbn
id � xidÞ; i ¼ 1; 2; . . . ;Ns

and d ¼ 1; 2; . . . ;D (1)

xid ¼ xid þ vid (2)

where c1 and c2 are positive constants, called acceleration

coefficients, Ns is the total number of particles in the swarm, D

is the dimension of problem search space, i.e., number of

parameters of the function being optimized, r1 and r2 are

two independently generated random numbers in the range

[0,1] and ‘‘n’’ represents the index of the best particle in the

neighborhood of a particle. The other vectors are defined as:

xi = [xi1, xi2, . . ., xiD] is the position of ith particle; vi ¼
½vi1; vi2; . . . ; viD� is the velocity of ith particle; bi = [bi1, bi2,

. . ., biD] is the best position of the ith particle (pBesti), and

bn
i ¼ ½bn

i1; b
n
i2; . . . ; bn

iD� is the best position found by the neigh-

borhood of the particle i (nBesti). The pseudo-codes for general

algorithmic flow of PSO are listed in Fig. 1.

Eq. (1) calculates a new velocity for each particle based on

its previous velocity, the particle’s position at which the best

possible fitness has been achieved so far, and the neighbors’

best position achieved. Eq. (2) updates each particle’s position

in the solution hyperspace.c1 and c2 are two learning factors,

which control the influence of pBest and nBest on the search

process. In all initial studies of PSO, both c1 and c2 are taken to

be 2.0 yielding good results [15]. However, in most cases, the

velocities quickly attain very large values, especially for

particles far from their global best. As a result, particles have

larger position updates with particles leaving boundary of the

search space. To control the increase in velocity, velocity

clamping is used in Eq. (1). Thus, if the right side of Eq. (1)

exceeds a specified maximum value Vmax
d , then the velocity on

that dimension is clamped to Vmax
d . Many improvements have

been incorporated into this basic algorithm. A review of these

modifications can be seen in [27].

The commonly used PSOs are either global version or local

version of PSO. In global version, all other particles influence the

velocity of a particle, while in the local version of PSO, selected

A.W. Mohemmed et al. / Applied Soft Computing 8 (2008) 1643–16531644

Download English Version:

https://daneshyari.com/en/article/497158

Download Persian Version:

https://daneshyari.com/article/497158

Daneshyari.com

https://daneshyari.com/en/article/497158
https://daneshyari.com/article/497158
https://daneshyari.com

