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Understanding the impact of process variability on TDDB is crucial for assuring robust reliability for current and
future technologynodes. Thiswork introduces a lifetime predictionmodel that considers localfield enhancement
to assess the combined impact of die-to-die spacing variability and line edge roughness. The model is applied to
16 nmhalf-pitch BEOL interconnects assuming either the power law or the root-E asfield accelerationmodel and
the impact on lifetime reduction is discussed. In comparisonwith the ideal case of a straight linewith anominal spacing
of 16 nm, a 1-sigma spacing variation of 0.6 nm and 1-sigma LER of 1 nm leads to ~3 orders of magnitude lifetime
reduction when assuming power-law whereas this value is ~1 order of magnitude when assuming root-E.
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1. Introduction

Low-kmaterials are used in advanced back-end of line (BEOL) inter-
connects to meet the required circuit performance of RC delay and
power consumption.With scaling dimensions and increasing low-k po-
rosity, time dependent dielectric breakdown (TDBB) is becoming a
major concern [1]. Process variability including line edge roughness
(LER), line-to-line (L2L) spacing variation and via misalignment signifi-
cantly impacts TDDB reliability due to reduced thickness and local E-
field enhancements [2–4]. Besides process variability, the assumption
of the lifetime model used to project the lifetime from high fields to
use conditions is also crucial to make reliable predictions [5,6]. The E
model and the root-E model are widely used by industry since they
give the most conservative lifetime predictions at operating fields
while the impact damage model, the power law and the 1/E model
give more optimistic predictions.

The impact of LER on BEOL TDDB has been discussed in the literature
[4–8]. In [7,8], protrusion size and field enhancement factor were deter-
mined and the root-Emodelwasmodified to assess the impact of LER. In
[5,6], the spacing distribution was modelled with a normal distribution
assuming E= V/s, a constant field across the low-k and did not account

for the local field enhancements. However, as clearly seen in Fig. 1, the
E-field profile across the dielectric shows a parabolic shape behaviour
with higher fields close to the copper and a flatter part in the middle
of the low-k when roughness exists (for more details, see Methodolo-
gy). For realistic TDDB predictions to assess the impact of process vari-
ability, this non-uniform E-field behaviour should be taken into
account. Moreover, modelling roughness using a normally distributed
spacing variation across the line does not result in realistic LER profiles.
It is reported that roughness profiles are auto-correlated along the cop-
per line and their amplitudes should be determined with a power spec-
trum obtained from Gaussian or exponential autocorrelation function
(ACF) [4,9,10].

The aim of this study is to propose a lifetime predictionmodel based
on E-fieldmapping after process emulations to predict the impact of LER
and L2L variability on BEOL TDDB. Realistic LER profiles are generated
from the power spectrum of a Gaussian ACF. Both the power law and
the root-E are integrated into our proposedmodel as a field acceleration
model and its impact on predictions is also discussed. The relation be-
tween the Weibull scale parameter η and field E is assumed as η ~ Em

for power law and η ~ exp(γ.√E) for root-E.

2. Methodology

The details of the methodology are given in [11]. In summary, a 3D
model is generated from a 2D layout of 32 nm pitch straight lines
using Sentaurus Process Explorer tool from Synopsys [12]. Random
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LER profiles are generated by the built-in function that applies a Fourier
synthesis technique based on the power spectrum of a Gaussian ACF. In
LER generation algorithm, the material is subdivided into N discrete

segments, whose amplitude is determined with the power spectrum
of a Gaussian ACF, after adding random phases.
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SG is the power spectrum of a Gaussian ACF, where λ and σ are the
correlation length and RMS amplitude of LER profile, respectively. k is
thewave-vector, k= i(2π/Ndx). dx is the spacing between two adjacent
segments and should bemuch smaller than λ to guarantee a reasonable
resolution of discretization. In this study, dx = 0.5, a value much
smaller than λ, which is typically ranging between 20 and 50 nm [13]
and λ = 30 nm. Fig. 2 demonstrates a randomly generated LER profile
from a Gaussian ACF with a nominal thickness of 16 nm and a LER

Fig. 1. (a) A typical E-fieldmapwith LER (b)Non-uniform E-field profile across low-kwith
LER.

Fig. 2. Typical LER profile generated from a Gaussian autocorrelation function.

Fig. 3. Schematic model cross-section and methodology for E-field mapping.

Fig. 4. LER-induced TDDB distributions for the spacing of 16 nm based on (a) the power
law and the root-E (b).
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