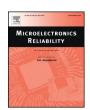
MR-12470; No of Pages 5

ARTICLE IN PRESS


Microelectronics Reliability xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

LER and spacing variability on BEOL TDDB using E-field mapping: Impact of field acceleration

D. Kocaay a,b,*, Ph.J. Roussel a, K. Croes a, I. Ciofi a, Y. Saad d, I. De Wolf a,c

- ^a imec, Kapeldreef 75, B-3001 Leuven, Belgium
- ^b Dept. Electrical Engineering, KU Leuven, B-3000 Leuven, Belgium
- ^c Dept. Materials Engineering, KU Leuven, B-3000 Leuven, Belgium
- ^d Synopsys LLC, CH-8050 Zurich, Switzerland

ARTICLE INFO

Article history: Received 28 May 2017 Accepted 23 June 2017 Available online xxxx

Keywords:
BEOL
TDDB
LER
Process variability
Lifetime model

ABSTRACT

Understanding the impact of process variability on TDDB is crucial for assuring robust reliability for current and future technology nodes. This work introduces a lifetime prediction model that considers local field enhancement to assess the combined impact of die-to-die spacing variability and line edge roughness. The model is applied to 16 nm half-pitch BEOL interconnects assuming either the power law or the root-E as field acceleration model and the impact on lifetime reduction is discussed. In comparison with the ideal case of a straight line with a nominal spacing of 16 nm, a 1-sigma spacing variation of 0.6 nm and 1-sigma LER of 1 nm leads to ~3 orders of magnitude lifetime reduction when assuming power-law whereas this value is ~1 order of magnitude when assuming root-E.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Low-k materials are used in advanced back-end of line (BEOL) interconnects to meet the required circuit performance of RC delay and power consumption. With scaling dimensions and increasing low-k porosity, time dependent dielectric breakdown (TDBB) is becoming a major concern [1]. Process variability including line edge roughness (LER), line-to-line (L2L) spacing variation and via misalignment significantly impacts TDDB reliability due to reduced thickness and local Efield enhancements [2–4]. Besides process variability, the assumption of the lifetime model used to project the lifetime from high fields to use conditions is also crucial to make reliable predictions [5,6]. The E model and the root-E model are widely used by industry since they give the most conservative lifetime predictions at operating fields while the impact damage model, the power law and the 1/E model give more optimistic predictions.

The impact of LER on BEOL TDDB has been discussed in the literature [4–8]. In [7,8], protrusion size and field enhancement factor were determined and the root-E model was modified to assess the impact of LER. In [5,6], the spacing distribution was modelled with a normal distribution assuming E = V/s, a constant field across the low-k and did not account

The aim of this study is to propose a lifetime prediction model based on E-field mapping after process emulations to predict the impact of LER and L2L variability on BEOL TDDB. Realistic LER profiles are generated from the power spectrum of a Gaussian ACF. Both the power law and the root-E are integrated into our proposed model as a field acceleration model and its impact on predictions is also discussed. The relation between the Weibull scale parameter η and field E is assumed as $\eta \sim E^m$ for power law and $\eta \sim \exp(\gamma \cdot NE)$ for root-E.

2. Methodology

The details of the methodology are given in [11]. In summary, a 3D model is generated from a 2D layout of 32 nm pitch straight lines using Sentaurus Process Explorer tool from Synopsys [12]. Random

http://dx.doi.org/10.1016/j.microrel.2017.06.053 0026-2714/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: D. Kocaay, et al., LER and spacing variability on BEOL TDDB using E-field mapping: Impact of field acceleration, Microelectronics Reliability (2017), http://dx.doi.org/10.1016/j.microrel.2017.06.053

for the local field enhancements. However, as clearly seen in Fig. 1, the E-field profile across the dielectric shows a parabolic shape behaviour with higher fields close to the copper and a flatter part in the middle of the low-k when roughness exists (for more details, see Methodology). For realistic TDDB predictions to assess the impact of process variability, this non-uniform E-field behaviour should be taken into account. Moreover, modelling roughness using a normally distributed spacing variation across the line does not result in realistic LER profiles. It is reported that roughness profiles are auto-correlated along the copper line and their amplitudes should be determined with a power spectrum obtained from Gaussian or exponential autocorrelation function (ACF) [4,9,10].

^{*} Corresponding author at: imec, Kapeldreef 75, B-3001 Leuven, Belgium. *E-mail address*: Deniz.Kocaay@imec.be (D. Kocaay).

D. Kocaay et al. / Microelectronics Reliability xxx (2017) xxx-xxx

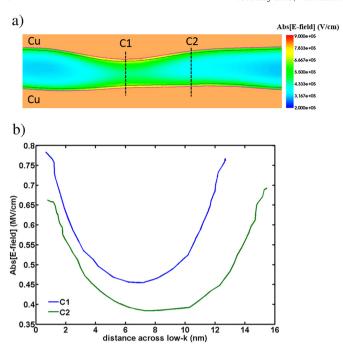


Fig. 1. (a) A typical E-field map with LER (b) Non-uniform E-field profile across low-k with LER.

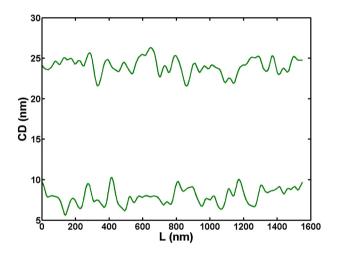
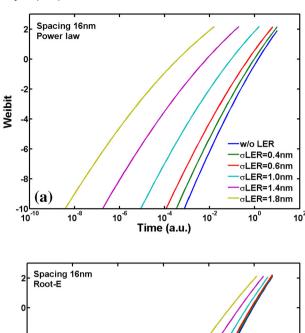
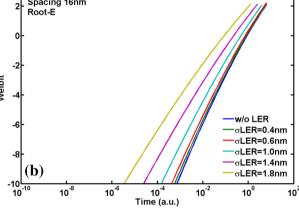




Fig. 2. Typical LER profile generated from a Gaussian autocorrelation function.

LER profiles are generated by the built-in function that applies a Fourier synthesis technique based on the power spectrum of a Gaussian ACF. In LER generation algorithm, the material is subdivided into N discrete

Fig. 4. LER-induced TDDB distributions for the spacing of 16 nm based on (a) the power law and the root-E (b).

segments, whose amplitude is determined with the power spectrum of a Gaussian ACF, after adding random phases.

$$S_{G}(k) = \sqrt{\pi \lambda \sigma^{2} \exp \left[-\left(\frac{\lambda^{2} k^{2}}{4}\right) \right]}$$
 (1)

 S_G is the power spectrum of a Gaussian ACF, where λ and σ are the correlation length and RMS amplitude of LER profile, respectively. k is the wave-vector, $k=i(2\pi/Nd_x)$. d_x is the spacing between two adjacent segments and should be much smaller than λ to guarantee a reasonable resolution of discretization. In this study, $d_x=0.5$, a value much smaller than λ , which is typically ranging between 20 and 50 nm [13] and $\lambda=30$ nm. Fig. 2 demonstrates a randomly generated LER profile from a Gaussian ACF with a nominal thickness of 16 nm and a LER

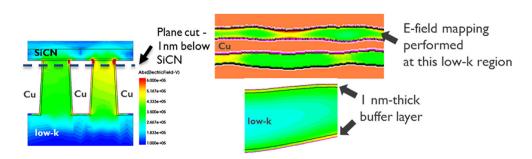


Fig. 3. Schematic model cross-section and methodology for E-field mapping.

Download English Version:

https://daneshyari.com/en/article/4971586

Download Persian Version:

https://daneshyari.com/article/4971586

Daneshyari.com