
 

Accepted Manuscript

Reusable and Generic Design Decisions for Developing UML-based
Domain-specific Languages

Bernhard Hoisl, Stefan Sobernig, Mark Strembeck

PII: S0950-5849(17)30453-6
DOI: 10.1016/j.infsof.2017.07.008
Reference: INFSOF 5851

To appear in: Information and Software Technology

Received date: 12 August 2016
Revised date: 12 July 2017
Accepted date: 13 July 2017

Please cite this article as: Bernhard Hoisl, Stefan Sobernig, Mark Strembeck, Reusable and Generic
Design Decisions for Developing UML-based Domain-specific Languages, Information and Software
Technology (2017), doi: 10.1016/j.infsof.2017.07.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2017.07.008
http://dx.doi.org/10.1016/j.infsof.2017.07.008


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Reusable and Generic Design Decisions for Developing UML-based Domain-specific
Languages

Bernhard Hoisla, Stefan Soberniga,∗, Mark Strembecka,b,c

aVienna University of Economics and Business (WU), Welthandelsplatz 1, 1020 Vienna, Austria
bSecure Business Austria (SBA) Research gGmbH, Favoritenstraße 16, 1040 Vienna, Austria

cComplexity Science Hub Vienna (CSH), Josefstädter Straße 39, 1080 Vienna, Austria

Abstract

Context: In recent years, UML-based domain-specific model languages (DSMLs) have become a popular option in model-
driven development projects. However, making informed design decisions for such DSMLs involves a large number of
non-trivial and inter-related options. These options concern the language-model specification, UML extension techniques,
concrete-syntax language design, and modeling-tool support.
Objective: In order to make the corresponding knowledge on design decisions reusable, proven design rationale from existing
DSML projects must be collected, systematized, and documented using an agreed upon documentation format.
Method: We applied a sequential multi-method approach to identify and to document reusable design decisions for UML-based
DSMLs. The approach included a Web-based survey with 80 participants. Moreover, 80 DSML projectsI, which have been
identified through a prior systematic literature review, were analyzed in detail in order to identify reusable design decisions
for such DSMLs.
Results: We present insights on the current state of practice in documenting UML-based DSMLs (e.g., perceived barriers, doc-
umentation techniques, reuse potential) and a publicly available collection of reusable design decisions, including 35 decision
options on different DSML development concerns (especially concerning the language model, concrete-syntax language de-
sign, and modeling tools). The reusable design decisions are documented using a structured documentation format (decision
record).
Conclusion: Our results are both, scientifically relevant (e.g. for design-space analyses or for creating classification schemas for
further research on UML-based DSML development) and important for actual software engineering projects (e.g. by providing
best-practice guidelines and pointers to common pitfalls).

Keywords: model-driven software development, domain-specific language, design decision, design rationale, Unified
Modeling Language, survey

1. Introduction

In model-driven development (MDD), a domain-specific
modeling language (DSML) is a domain-specific language
(DSL) for specifying design-level and platform-independent
concerns in the target domain, rather than implementation-
level concerns (see, e.g., [1]). In this context, DSMLs typ-
ically provide (but are not limited to) a graphical concrete
syntax. A DSML is built on top of a tailored abstract syn-
tax (i.e. the core language model) which is typically defined
using metamodeling techniques. In addition to a DSML’s ab-
stract syntax (metamodel), DSML developers often use for-
mal textual specification techniques to express the DSML’s
structural and behavioral semantics [2]. Once the abstract

INote that it is pure coincidence that there were 80 participants in the
survey and that 80 DSML projects were reviewed.
∗Corresponding author
Email addresses: bernhard.hoisl@wu.ac.at (Bernhard Hoisl),

stefan.sobernig@wu.ac.at (Stefan Sobernig),
mark.strembeck@wu.ac.at (Mark Strembeck)

syntax and a corresponding concrete syntax are specified, a
DSML is typically integrated into an MDD tool chain, such as
the Eclipse Modeling Framework (EMF).

In recent years, the development of DSMLs based on
the Unified Modeling Language (UML [3]) and/or on the
Meta Object Facility (MOF [4]) has become a popular choice
among software engineers: In a related survey, we found
that more than 50% of the participating MDD researchers
and practitioners have contributed to at least one UML-
based DSML between 2000 and 2015 [5]. In addition to our
own findings, the UML’s relevance for DSML development
is also reported in numerous other contributions (see, e.g.,
[6, 7, 8, 9, 10]). On the one hand, this momentum is due
to a general trend towards the usage of DSLs in MDD [11].
On the other hand, the UML and the MOF provide native
extension techniques for a) developing fully customized
modeling languages (e.g., new diagram types) and b) for
adapting the UML to domain-specific purposes while reusing
UML features. Examples of such techniques include UML
profiles [9, 12], pruning/reduction [13], metamodel slic-

Preprint submitted to Elsevier July 24, 2017



Download English Version:

https://daneshyari.com/en/article/4972207

Download Persian Version:

https://daneshyari.com/article/4972207

Daneshyari.com

https://daneshyari.com/en/article/4972207
https://daneshyari.com/article/4972207
https://daneshyari.com

