
ARTICLE IN PRESS

JID: INFSOF [m5G; July 27, 2017;14:1]

Information and Software Technology 0 0 0 (2017) 1–10

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Experimental comparison of approaches for checking completeness of

test suites from finite state machines

�

Adilson Bonifacio

a , ∗, Arnaldo Moura

b , Adenilso Simao

c

a Computing Department, University of Londrina, Londrina, Brazil
b Computing Institute, University of Campinas, Campinas, Brazil
c Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil

a r t i c l e i n f o

Article history:

Received 16 November 2016

Revised 9 July 2017

Accepted 23 July 2017

Available online xxx

Keywords:

Test suite completeness

Experiments

Completeness conditions

Confirmed sets

Simulation relations

a b s t r a c t

Context: Many approaches have been proposed for checking test suite completeness for Finite State Ma-

chines (FSMs). Some approaches provide sufficient conditions whereas others give necessary and suffi-

cient conditions for test suite completeness. One method, called the CONF method, is based on sufficient

conditions, and relies on a search for confirmed sets when checking completeness. If a confirmed set

cannot be found, then the outcome is inconclusive. Another method, the SIM method, is based on the

notion of simulation relations, and relies on necessary and sufficient conditions when checking test suite

completeness. The SIM method always returns conclusive verdicts about suite completeness.

Objective: In this work, we describe experimental results comparing these two methods. We also inves-

tigate when both methods can be combined for checking completeness of test suites.

Method: We evaluate both strategies according to different parameters of the FSMs, such as the number

of states and the number of transitions in the FSM models, the size of input and output alphabets of the

FSM models, as well as the size of the test suites. We also report on the relative rates of conclusive and

inconclusive verdicts when using both methods.

Results: We see that these methods are complementary, which allows for a combined strategy: the CONF

method is the fastest in terms of processing time, while the SIM method is not as scalable in terms of

the size of the specifications.

Conclusion: The experimental results indicated a substantial difference for the rate of positive verdicts

obtained by the SIM method when compared with the number of positive answers returned by the CONF

method.

© 2017 Published by Elsevier B.V.

1. Introduction

Test generation from Finite State Machines is a long-standing

problem, with many contributions throughout the last decades

[1–4] . The main goal is to obtain test suites that are complete

with respect to a set of faulty candidate FSMs [5–10] . Usually, the

completeness of the generated test suites is demonstrated based

on sufficient conditions, i.e., conditions that, once satisfied, en-

sure that all faulty implementations will be detected [3,11] . Thus,

the completeness of the methods is guaranteed by construction by

checking that the method always produces a test suite that sat-

isfies the sufficient conditions. In other situations, the generation

method may not guarantee that the test suites thus produced are

� In collaboration with Computing Institute - Unicamp
∗ Corresponding author.

E-mail addresses: bonifacio@uel.br , adilsonbonifacio@gmail.com (A. Bonifacio),

arnaldo@ic.unicamp.br (A. Moura), adenilso@icmc.usp.br (A. Simao).

always complete. In these cases, it will be necessary to check com-

pleteness a posteriori.

A method that relies on sufficient conditions for checking suite

completeness was proposed by Simao and Petrenko [12] . They in-

troduce the notion of confirmed sets. A set of input sequences T

is confirmed with respect to a test suite T and a FSM M if input

sequences in T leading to a same state in M also lead to a same

state in any FSM that has the same output responses as M does to

test cases in T , and which has as many states as M . If one can find

a confirmed set which includes the empty string and whose se-

quences are enough to exercise each transition in M , then the test

suite is guaranteed to be complete for M . Their method also re-

quires implementation candidates to be completely specified FSMs,

and which have at most as many states as the specification M . If

a confirmed set cannot be found, then the method is inconclusive

about test suite completeness.

By contrast, Bonifacio and Moura [13] have proposed a method

for checking test suite completeness which is based on necessary

http://dx.doi.org/10.1016/j.infsof.2017.07.012

0950-5849/© 2017 Published by Elsevier B.V.

Please cite this article as: A. Bonifacio et al., Experimental comparison of approaches for checking completeness of test suites from finite

state machines, Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.07.012

http://dx.doi.org/10.1016/j.infsof.2017.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:bonifacio@uel.br
mailto:adilsonbonifacio@gmail.com
mailto:arnaldo@ic.unicamp.br
mailto:adenilso@icmc.usp.br
http://dx.doi.org/10.1016/j.infsof.2017.07.012
http://dx.doi.org/10.1016/j.infsof.2017.07.012

2 A. Bonifacio et al. / Information and Software Technology 0 0 0 (2017) 1–10

ARTICLE IN PRESS

JID: INFSOF [m5G; July 27, 2017;14:1]

and sufficient conditions. If the method is applied to a specification

M and a test suite T , the outcome is always conclusive, that is, it

always yields either a ‘yes’ or a ‘no’ answer, thus always deciding

whether or not the test suite is complete for the given specification

FSM. The method relies on the notion of simulation relations. Com-

pleteness is guaranteed if and only if any T -equivalent candidate

implementation FSM simulates M . The approach also requires im-

plementations to be completely specified. An extension [14] gener-

alized the method to partial implementations. We remark that the

fault domains here are as wide as possible, that is, a complete test

suite must detect any misbehavior between the given specification

and any implementation no matter what input string is submitted

to them, provided that the implementation under test has at most

an arbitrary, but fixed, number of states.

It is not surprising that algorithms that give a conclusive verdict

only when some sufficient conditions are present can be more effi-

cient in practice. However, they may miss completeness when the

required sufficient conditions cannot be ascertained. On the other

hand, if a conclusive verdict is important, e.g. due to the nature of

the application under test, we need to consider algorithms based

on necessary and sufficient conditions, which will always yield a

definitive verdict about test suite completeness.

In this paper, we present experimental results comparing the

method proposed by Simao and Petrenko [12] and the approach

in [13] . We randomly generate different test suites and different

groups of FSMs. Each experiment evaluates different aspects of

both methods, such as the number of states allowed for specifi-

cations, the number of transitions in the models, the number of

input and output actions, and the size of test suites. We also in-

vestigate when both methods can be combined in mutually rein-

forcing ways. It turns out that these methods are somehow com-

plementary, which allows for a combined strategy: one method is

the fastest but does not always terminate with conclusive verdicts,

while the other is not as scalable but it always returns conclusive

answers.

The remaining of this paper is organized as follows.

Section 2 contains basic notions and lays down some nota-

tion. Both methods are presented in Section 3 and experimental

results are reported in Section 4 . Section 5 offers concluding

remarks.

2. Basics and notation

If X is a set, then P(X) indicates the power set of X . Let A be

an alphabet. The length of a finite sequence of symbols α over A is

indicated by | α|. The set of all finite sequences over A is denoted

by A

� . The empty sequence will be indicated by ε. When we write

x 1 x 2 . . . x n ∈ A

� , it is implicitly assumed that n ≥ 0 and that x i ∈ A ,

1 ≤ i ≤ n , unless explicitly noted otherwise. When n = 0 , x 1 x 2 . . . x n
denotes the empty sequence, ε. The classical notion of Finite State

Machines [12,15] is as follows:

Definition 1. A Finite State Machine (FSM) is a tuple M =

(S, s 0 , I, O, D, δ, λ) , where

– S is a finite set of states

– s 0 ∈ S is the initial state

– I is a finite set of input actions or input events

– O is a finite set of output actions or output events

– D ⊆ S × I is a specification domain

– δ: D → S is the transition function

– λ : D → O is the output function.

Note that all FSMs treated here are deterministic. The following

conventions will ease the notation:

– We fix M = (S, s 0 , I, O, D, δ, λ) and N = (Q, q 0 , I, O

′ , D

′ , μ, τ) ,

as FSMs with the same input action alphabet, I .

– s, q, p, r will indicate states; x, y will indicate input actions; and

a, b will indicate output actions; σ will indicate input action

sequences, and ω will denote output action sequences. We may

also use decorations, like s 1 , x
′ or a ′

3
.

Let M be a FSM and let σ = x 1 x 2 · · · x n ∈ I � , ω = a 1 a 2 · · · a n ∈ O

� .

If there are states r i ∈ S (0 ≤ i ≤ n) such that δ(r i −1 , x i) = r i and

λ(r i −1 , x i) = a i (1 ≤ i ≤ n), then we may write r 0
σ/ω → r n . Since all

FSMs treated here are deterministic, when such states r i exist, they

are unique, given r 0 . When the input sequence σ , or the output

sequence ω, is not important we may write r 0
σ/ → r n , or r 0

/ω → r n ,

respectively. If both sequences are not important, we may write

r 0 → r n . We can also drop the target state when it is not impor-

tant, e.g. r 0
σ/ω → or r 0 → . When we need to indicate the FSM we

write
σ/ω →

M

, and similarly for the other variants of the notation. The

function U : S → P(I �) will be useful, where U(s) = { σ | s σ/ → } .
It will be useful to extend the domains of the functions δ and

λ so as to accommodate sets of strings. Define ̂ δ : S × P(I �) →

P(S) by letting ̂ δ(s, K) = { r | s σ/ → r, for some σ ∈ K } . We may write ̂ δ(s, σ) = r instead of ̂ δ(s, { σ }) = { r} and, when there is no ambi-

guity, we may simply write δ instead of ̂ δ. Similarly, we extend the

function λ to ̂ λ : S × P(I �) → P(O

�) by letting ̂ λ(s, K) = { w | s σ/w → ,

for some σ ∈ K } , and we may relax the notation likewise.

Now we can say when a FSM is complete.

Definition 2. A FSM M is complete if and only if (s, x) ∈ D , for all

s ∈ S and all x ∈ I .

If M is not complete, it is a partial FSM.

The next notions of distinguishability and equivalence are cru-

cial to understand suite completeness. Recall our notational con-

ventions at page 5.

Definition 3. Let M and N be FSMs, s ∈ S, q ∈ Q , and C ⊆ I � .
Then s and q are C-distinguishable , written s 	≈C q, if and only

if λ(s, σ) 	 = τ (q, σ) for some σ ∈ U (s) ∩ U (q) ∩ C . Else, they

are C-equivalent , written s ≈ C q . We say that M and N are C-

distinguishable , written M 	≈C N, if and only if s 0 	≈C q 0 , otherwise

they are C-equivalent , written M ≈ C N .

When C is omitted in the relation ≈ , we mean C = I � . Also,

we may simply say that M is equivalent to N when M ≈ N . 1

We now say when a FSM is reduced.

Definition 4. We say that a FSM M is reduced if and only if every

pair of distinct states in S are distinguishable, and for all s ∈ S there

is an input sequence σ ∈ I � with δ(s 0 , σ) = s .

An input sequence σ such that δ(s 0 , σ) = s is also called a

transfer sequence for s . We note that the definition of reduced FSMs

in [12] is written in slightly different, but equivalent, terms when

compared to Definition 4 , since they assume at the outset that

their models are initially connected FSMs, that is, they are FSMs

where there is a transfer sequence for each state. We also note that

some earlier notions of reducibility for FSMs did not require the

reachability condition δ(s 0 , σ) = s . Since we do not assume FSMs

to be initially connected, this condition prevents the consideration

of FSMs that may have a block of states unreachable from the ini-

tial state. Clearly, those states could not be probed during a test

run.

Since for any two states that are distinguishable there is a

shortest input sequence that distinguishes them, we can effectively

check if a FSM is reduced.

Given sequences α, β, γ ∈ I � , if β = αγ , then α is said to be a

prefix of β . Moreover, if γ is not empty, then α is a proper prefix

1 Note that C -equivalence is not an equivalence relation in the usual sense.

Please cite this article as: A. Bonifacio et al., Experimental comparison of approaches for checking completeness of test suites from finite

state machines, Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.07.012

http://dx.doi.org/10.1016/j.infsof.2017.07.012

Download English Version:

https://daneshyari.com/en/article/4972210

Download Persian Version:

https://daneshyari.com/article/4972210

Daneshyari.com

https://daneshyari.com/en/article/4972210
https://daneshyari.com/article/4972210
https://daneshyari.com

