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a b s t r a c t 

Context: Many approaches have been proposed for checking test suite completeness for Finite State Ma- 

chines (FSMs). Some approaches provide sufficient conditions whereas others give necessary and suffi- 

cient conditions for test suite completeness. One method, called the CONF method, is based on sufficient 

conditions, and relies on a search for confirmed sets when checking completeness. If a confirmed set 

cannot be found, then the outcome is inconclusive. Another method, the SIM method, is based on the 

notion of simulation relations, and relies on necessary and sufficient conditions when checking test suite 

completeness. The SIM method always returns conclusive verdicts about suite completeness. 

Objective: In this work, we describe experimental results comparing these two methods. We also inves- 

tigate when both methods can be combined for checking completeness of test suites. 

Method: We evaluate both strategies according to different parameters of the FSMs, such as the number 

of states and the number of transitions in the FSM models, the size of input and output alphabets of the 

FSM models, as well as the size of the test suites. We also report on the relative rates of conclusive and 

inconclusive verdicts when using both methods. 

Results: We see that these methods are complementary, which allows for a combined strategy: the CONF 

method is the fastest in terms of processing time, while the SIM method is not as scalable in terms of 

the size of the specifications. 

Conclusion: The experimental results indicated a substantial difference for the rate of positive verdicts 

obtained by the SIM method when compared with the number of positive answers returned by the CONF 

method. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Test generation from Finite State Machines is a long-standing 

problem, with many contributions throughout the last decades 

[1–4] . The main goal is to obtain test suites that are complete 

with respect to a set of faulty candidate FSMs [5–10] . Usually, the 

completeness of the generated test suites is demonstrated based 

on sufficient conditions, i.e., conditions that, once satisfied, en- 

sure that all faulty implementations will be detected [3,11] . Thus, 

the completeness of the methods is guaranteed by construction by 

checking that the method always produces a test suite that sat- 

isfies the sufficient conditions. In other situations, the generation 

method may not guarantee that the test suites thus produced are 
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always complete. In these cases, it will be necessary to check com- 

pleteness a posteriori. 

A method that relies on sufficient conditions for checking suite 

completeness was proposed by Simao and Petrenko [12] . They in- 

troduce the notion of confirmed sets. A set of input sequences T 

is confirmed with respect to a test suite T and a FSM M if input 

sequences in T leading to a same state in M also lead to a same 

state in any FSM that has the same output responses as M does to 

test cases in T , and which has as many states as M . If one can find 

a confirmed set which includes the empty string and whose se- 

quences are enough to exercise each transition in M , then the test 

suite is guaranteed to be complete for M . Their method also re- 

quires implementation candidates to be completely specified FSMs, 

and which have at most as many states as the specification M . If 

a confirmed set cannot be found, then the method is inconclusive 

about test suite completeness. 

By contrast, Bonifacio and Moura [13] have proposed a method 

for checking test suite completeness which is based on necessary 
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and sufficient conditions. If the method is applied to a specification 

M and a test suite T , the outcome is always conclusive, that is, it 

always yields either a ‘yes’ or a ‘no’ answer, thus always deciding 

whether or not the test suite is complete for the given specification 

FSM. The method relies on the notion of simulation relations. Com- 

pleteness is guaranteed if and only if any T -equivalent candidate 

implementation FSM simulates M . The approach also requires im- 

plementations to be completely specified. An extension [14] gener- 

alized the method to partial implementations. We remark that the 

fault domains here are as wide as possible, that is, a complete test 

suite must detect any misbehavior between the given specification 

and any implementation no matter what input string is submitted 

to them, provided that the implementation under test has at most 

an arbitrary, but fixed, number of states. 

It is not surprising that algorithms that give a conclusive verdict 

only when some sufficient conditions are present can be more effi- 

cient in practice. However, they may miss completeness when the 

required sufficient conditions cannot be ascertained. On the other 

hand, if a conclusive verdict is important, e.g. due to the nature of 

the application under test, we need to consider algorithms based 

on necessary and sufficient conditions, which will always yield a 

definitive verdict about test suite completeness. 

In this paper, we present experimental results comparing the 

method proposed by Simao and Petrenko [12] and the approach 

in [13] . We randomly generate different test suites and different 

groups of FSMs. Each experiment evaluates different aspects of 

both methods, such as the number of states allowed for specifi- 

cations, the number of transitions in the models, the number of 

input and output actions, and the size of test suites. We also in- 

vestigate when both methods can be combined in mutually rein- 

forcing ways. It turns out that these methods are somehow com- 

plementary, which allows for a combined strategy: one method is 

the fastest but does not always terminate with conclusive verdicts, 

while the other is not as scalable but it always returns conclusive 

answers. 

The remaining of this paper is organized as follows. 

Section 2 contains basic notions and lays down some nota- 

tion. Both methods are presented in Section 3 and experimental 

results are reported in Section 4 . Section 5 offers concluding 

remarks. 

2. Basics and notation 

If X is a set, then P(X ) indicates the power set of X . Let A be 

an alphabet. The length of a finite sequence of symbols α over A is 

indicated by | α|. The set of all finite sequences over A is denoted 

by A 

� . The empty sequence will be indicated by ε. When we write 

x 1 x 2 . . . x n ∈ A 

� , it is implicitly assumed that n ≥ 0 and that x i ∈ A , 

1 ≤ i ≤ n , unless explicitly noted otherwise. When n = 0 , x 1 x 2 . . . x n 
denotes the empty sequence, ε. The classical notion of Finite State 

Machines [12,15] is as follows: 

Definition 1. A Finite State Machine (FSM) is a tuple M = 

(S, s 0 , I, O, D, δ, λ) , where 

– S is a finite set of states 

– s 0 ∈ S is the initial state 

– I is a finite set of input actions or input events 

– O is a finite set of output actions or output events 

– D ⊆ S × I is a specification domain 

– δ: D → S is the transition function 

– λ : D → O is the output function. 

Note that all FSMs treated here are deterministic. The following 

conventions will ease the notation: 

– We fix M = (S, s 0 , I, O, D, δ, λ) and N = (Q, q 0 , I, O 

′ , D 

′ , μ, τ ) , 

as FSMs with the same input action alphabet, I . 

– s, q, p, r will indicate states; x, y will indicate input actions; and 

a, b will indicate output actions; σ will indicate input action 

sequences, and ω will denote output action sequences. We may 

also use decorations, like s 1 , x 
′ or a ′ 

3 
. 

Let M be a FSM and let σ = x 1 x 2 · · · x n ∈ I � , ω = a 1 a 2 · · · a n ∈ O 

� . 

If there are states r i ∈ S (0 ≤ i ≤ n ) such that δ(r i −1 , x i ) = r i and 

λ(r i −1 , x i ) = a i (1 ≤ i ≤ n ), then we may write r 0 
σ/ω → r n . Since all 

FSMs treated here are deterministic, when such states r i exist, they 

are unique, given r 0 . When the input sequence σ , or the output 

sequence ω, is not important we may write r 0 
σ/ → r n , or r 0 

/ω → r n , 

respectively. If both sequences are not important, we may write 

r 0 → r n . We can also drop the target state when it is not impor- 

tant, e.g. r 0 
σ/ω → or r 0 → . When we need to indicate the FSM we 

write 
σ/ω → 

M 

, and similarly for the other variants of the notation. The 

function U : S → P(I � ) will be useful, where U(s ) = { σ | s σ/ → } . 
It will be useful to extend the domains of the functions δ and 

λ so as to accommodate sets of strings. Define ̂ δ : S × P(I � ) → 

P(S) by letting ̂  δ(s, K) = { r | s σ/ → r, for some σ ∈ K } . We may write ̂ δ(s, σ ) = r instead of ̂ δ(s, { σ } ) = { r} and, when there is no ambi- 

guity, we may simply write δ instead of ̂  δ. Similarly, we extend the 

function λ to ̂  λ : S × P(I � ) → P(O 

� ) by letting ̂  λ(s, K) = { w | s σ/w → , 

for some σ ∈ K } , and we may relax the notation likewise. 

Now we can say when a FSM is complete. 

Definition 2. A FSM M is complete if and only if ( s, x ) ∈ D , for all 

s ∈ S and all x ∈ I . 

If M is not complete, it is a partial FSM. 

The next notions of distinguishability and equivalence are cru- 

cial to understand suite completeness. Recall our notational con- 

ventions at page 5. 

Definition 3. Let M and N be FSMs, s ∈ S, q ∈ Q , and C ⊆ I � . 
Then s and q are C-distinguishable , written s 	≈C q, if and only 

if λ( s, σ ) 	 = τ ( q, σ ) for some σ ∈ U ( s ) ∩ U ( q ) ∩ C . Else, they 

are C-equivalent , written s ≈ C q . We say that M and N are C- 

distinguishable , written M 	≈C N, if and only if s 0 	≈C q 0 , otherwise 

they are C-equivalent , written M ≈ C N . 

When C is omitted in the relation ≈ , we mean C = I � . Also, 

we may simply say that M is equivalent to N when M ≈ N . 1 

We now say when a FSM is reduced. 

Definition 4. We say that a FSM M is reduced if and only if every 

pair of distinct states in S are distinguishable, and for all s ∈ S there 

is an input sequence σ ∈ I � with δ(s 0 , σ ) = s . 

An input sequence σ such that δ(s 0 , σ ) = s is also called a 

transfer sequence for s . We note that the definition of reduced FSMs 

in [12] is written in slightly different, but equivalent, terms when 

compared to Definition 4 , since they assume at the outset that 

their models are initially connected FSMs, that is, they are FSMs 

where there is a transfer sequence for each state. We also note that 

some earlier notions of reducibility for FSMs did not require the 

reachability condition δ(s 0 , σ ) = s . Since we do not assume FSMs 

to be initially connected, this condition prevents the consideration 

of FSMs that may have a block of states unreachable from the ini- 

tial state. Clearly, those states could not be probed during a test 

run. 

Since for any two states that are distinguishable there is a 

shortest input sequence that distinguishes them, we can effectively 

check if a FSM is reduced. 

Given sequences α, β, γ ∈ I � , if β = αγ , then α is said to be a 

prefix of β . Moreover, if γ is not empty, then α is a proper prefix 

1 Note that C -equivalence is not an equivalence relation in the usual sense. 
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