
ARTICLE IN PRESS 

JID: INFSOF [m5G; September 5, 2017;21:38 ] 

Information and Software Technology 0 0 0 (2017) 1–13 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

How developers perceive smells in source code: A replicated study 

Davide Taibi ∗, Andrea Janes , Valentina Lenarduzzi 

Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy 

a r t i c l e i n f o 

Article history: 

Received 12 December 2016 

Revised 16 August 2017 

Accepted 17 August 2017 

Available online xxx 

Keywords: 

Software maintenance 

Code smells 

Bad smells 

Antipatterns 

Refactoring 

a b s t r a c t 

Context. In recent years, smells, also referred to as bad smells, have gained popularity among developers. 

However, it is still not clear how harmful they are perceived from the developers’ point of view. Many 

developers talk about them, but only few know what they really are, and even fewer really take care of 

them in their source code. 

Objective. The goal of this work is to understand the perceived criticality of code smells both in theory, 

when reading their description, and in practice. 

Method. We executed an empirical study as a differentiated external replication of two previous studies. 

The studies were conducted as surveys involving only highly experienced developers (63 in the first study 

and 41 in the second one). First the perceived criticality was analyzed by proposing the description of 

the smells, then different pieces of code infected by the smells were proposed, and finally their ability to 

identify the smells in the analyzed code was tested. 

Results. According to our knowledge, this is the largest study so far investigating the perception of code 

smells with professional software developers. The results show that developers are very concerned about 

code smells in theory, nearly always considering them as harmful or very harmful (17 out of 23 smells). 

However, when they were asked to analyze an infected piece of code, only few infected classes were 

considered harmful and even fewer were considered harmful because of the smell. 

Conclusions. The results confirm our initial hypotheses that code smells are perceived as more critical in 

theory but not as critical in practice. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Software Quality Assurance (SQA), i.e., assuring that software 

fulfills the posed quality standards, remains a task that requires 

effort and expertise. 

Software is invisible, which “means that it is very easy for the 

project to proceed for a considerable time before problems become 

apparent, and without it being possible to verify that the passing 

of time and expenditure of money correlate with progression of 

the project in the desired direction [1] .” To cope with the invisi- 

bility of software is costly: quality-related information is difficult 

to collect [2,3] , requires time and effort; as a consequence, often 

other activities, e.g., adding new features to a product are given 

a higher priority then investing in improving the internal qual- 

ity of the software [3] . Quality tools aim to reduce the costs of 

quality, however, while such tools alleviate the task of collecting 

∗ Corresponding author. 

E-mail addresses: davide.taibi@unibz.it (D. Taibi), andrea.janes@unibz.it (A. 

Janes), valentina.lenarduzzi@unibz.it (V. Lenarduzzi). 

quality-related information, they often require substantial effort to 

understand the analysis they provide. 

One type of analysis that quality tools provide, is the detec- 

tion of code smells [4] and antipatterns [5] . Code smells are struc- 

tural characteristics of software, which may indicate code or design 

problems that can make software hard to evolve and maintain [4] . 

In this work we adopt the term code smells for both code smells 

and antipatterns. 

Several studies consider code smells harmful from a mainte- 

nance point of view [6–11] , while others suggest that smells are 

not terribly problematic [12] . Code Smells are also considered a 

cause of potential faults by several studies [13–17] , while other 

studies report a significant but small effect on them [18] . More- 

over, Code Smells present in the source code are also considered 

causes of higher change-proneness [14,15,19–21] and low code un- 

derstandability [22] . 

Developers often do not know about the code smells they in- 

troduce into their source code (including the decreasing maintain- 

ability). For this reason, the identification of code smells (and the 

investment of time to remove them) is gaining acceptance in in- 

dustry [23] . 

http://dx.doi.org/10.1016/j.infsof.2017.08.008 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: D. Taibi et al., How developers perceive smells in source code: A replicated study, Information and Software 

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.08.008 

http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:davide.taibi@unibz.it
mailto:andrea.janes@unibz.it
mailto:valentina.lenarduzzi@unibz.it
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/10.1016/j.infsof.2017.08.008


2 D. Taibi et al. / Information and Software Technology 0 0 0 (2017) 1–13 

ARTICLE IN PRESS 

JID: INFSOF [m5G; September 5, 2017;21:38 ] 

Some examples of SQA tools that are proposing techniques for 

detecting and reducing code smells are JDeodorant, 1 DECOR [24] , 

or SonarQube. 2 However, the term “code smell” is not always 

clearly understood. As an example, SonarQube, one of the most fre- 

quently used tools for SQA, renamed the concept of “Code Issues”, 

which originally related to the adherence to coding standards, into 

the term “code smells”, increasing the misunderstanding of code 

smells from the developers’ point of view. In this context, in ad- 

dition to the question of whether SQA practices are worth the ef- 

fort or not, researchers are also discussing how developers perceive 

code smells: 

• if they are perceiving them as a serious problem that deserves 

extra effort to be solved; and 

• if they see them as some sort of hint that they will take into 

consideration next time they will edit that code. 

The first question that arises is whether developers have a com- 

mon understanding what a code smell is; the second how harmful 

they consider them. 

Several researchers have investigated code smells in the past; 

we focus on two particular studies that studied the two questions 

just mentioned: the first study by Yamashita and Moonen [8] enti- 

tled “Do Developers Care about Code Smells? An Exploratory Sur- 

vey” investigates if developers consider code smells as something 

harmful; the second study by Palomba et al. [25] entitled “Do they 

Really Smell Bad? A Study on Developers’ Perception of Bad Code 

Smells” investigates if developers have a common understanding 

of code smells, i.e., if when confronted with them in the code they 

recognize it as the same problem, and how harmful they see the 

problem. At the best of our knowledge, these two studies were the 

only ones assessing the perceived harmfulness of code smells. 

We designed this study as a differentiated external replication 

of two studies [26] . The differences of this replication to the previ- 

ous two studies are: 

• The respondents in the study by Yamashita and Moonen 

[8] were mostly originating from India, USA, Pakistan and Ro- 

mania (38 from 73 respondents). Since we conducted our study 

during a conference that took place in Europe (see Section 3 ), 

we mainly had European and American participants. Moreover, 

the origin of the respondends in [25] was not reported so we 

cannot compare this aspect to our study. 

• Palomba et al. [25] . interviewed 34 participants in their study. 

Only 9 were industrial developers, 10 were developers involved 

in the original projects from which the authors took code ex- 

amples, and 15 were master students. The selected interviewees 

expose this study to two threats to validity: 

• Developers who are familiar with the code being evaluated 

might have a different perception of the harmfulness 3 of a 

code smell than somebody who has never seen the code. 

Some code smells may be intentionally left in the code be- 

cause they are a side effect of another design decision. Such 

background knowledge can bias the elicitation of the atti- 

tude of developers towards code smells. 

• The question of whether students can be used as subjects 

in software engineering experiments is widely debated (e.g., 

in [27] ). We find that in the study on how code smells are 

perceived, experience plays a crucial role. If the question is 

how developers perceive code smells, students might assess 

problematic Java classes differently from professional soft- 

ware developers. 

1 https://marketplace.eclipse.org/content/jdeodorant . 
2 http://www.sonarqube.org/ . 
3 Some authors instead of “harmfulness” speak of “criticality”. Both terms express 

a potential risk attached to a problem but have slightly different connotations. For 

the sake of clarity, in this paper, we only use the term “harmfulness”. 

• Palomba et al. consider only 12 code smells, while we extended 

our study to all 23 code smells proposed by Fowler et al. [4] . 

According to our knowledge, this is the largest study so far in- 

vestigating the perception of code smells with professional soft- 

ware developers: we collected the perception about the harmful- 

ness of code smells of 63 participants and assessed the ability to 

identify and categorize code smells in source code examples of 41 

participants. Moreover, we compared the perceived harmfulness of 

32 participants first just based on the definition and then again 

when they were confronted with infected 

4 source code. 

The main findings of our work are: 

1. Some smells are considered important in theory but are not 

perceived as a design problem in practice. 

2. Some smells are considered as not harmful in theory but are 

perceived as a design problem in practice. 

3. Smells related to size and complexity are considered harmful 

by a higher percentage of participants than others. 

The remainder of this paper is structured as follows. In 

Section 2 , we discuss the background and related work: in 

Section 3 , we describe the empirical study focusing on the study 

process, the study execution, and the data analysis. In Section 4 , 

we present results obtained, while in Section 5 we discuss them. 

Section 6 discuss on threats to validity. Finally, in Section 7 we 

draw conclusions and outline future work. 

2. Background and related work 

In this section, we first introduce code smells and then report 

on empirical studies on them. 

2.1. Code smells 

Code smells, also referred to as bad smells, were first intro- 

duced by Kent Beck and Martin Fowler in 1999 [4] , extending the 

code “pitfalls” defined in 1995 by Webster [28] . They can be con- 

sidered as “poor” implementation and design decisions that may 

make it difficult for programmers to carry out changes and that 

hinder the evolution of systems. They are not considered defects 

but may increase the probability that flaws exist in a piece of soft- 

ware that may affect both the design stages and the implementa- 

tion. 

Table 1 presents the list of code smells proposed by 

Martin Fowler [4] and used in this study. 

2.2. Empirical studies on code smells 

Several studies found that code smells indeed are good 

indicators for code parts with a low maintainability , e.g., 

Deligiannis et al. [9] found that considering a specific design 

heuristic (to avoid a bad smell) in an experiment had a pos- 

itive impact on creating more maintainable design structures; 

Malhotra et al. [10] found that bad smells could be used as an 

important source of information to quantify flaws in classes; and 

Fenske and Schulze [29] found that code smells that also consider 

variability, are good indicators of low program comprehension, main- 

tenance , and evolution in software product lines. 

Unfortunately, other studies found that considering code smells 

can have a negative impact on maintainability or that the impact is 

not always clear: e.g., Kim et al. [6] found that refactoring code 

clones did not always improve software quality; Yamashita and 

Moonen [7] found that only some code smells reflected impor- 

tant maintainability aspects, others required combining different 

4 We call source code “infected” if it contains code smells. 

Please cite this article as: D. Taibi et al., How developers perceive smells in source code: A replicated study, Information and Software 

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.08.008 

https://marketplace.eclipse.org/content/jdeodorant
http://www.sonarqube.org/
http://dx.doi.org/10.1016/j.infsof.2017.08.008


Download English Version:

https://daneshyari.com/en/article/4972218

Download Persian Version:

https://daneshyari.com/article/4972218

Daneshyari.com

https://daneshyari.com/en/article/4972218
https://daneshyari.com/article/4972218
https://daneshyari.com

