
ARTICLE IN PRESS

JID: INFSOF [m5G; January 27, 2017;16:38]

Information and Software Technology 0 0 0 (2017) 1–18

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Analyzing and predicting effort associated with finding and fixing

software faults

Maggie Hamill a , Katerina Goseva-Popstojanova

b , ∗

a School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
b Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA

a r t i c l e i n f o

Article history:

Received 21 January 2016

Revised 4 September 2016

Accepted 10 January 2017

Available online xxx

Keywords:

Software faults and failures

Software fix implementation effort

Case study

Analysis

Prediction

a b s t r a c t

Context : Software developers spend a significant amount of time fixing faults. However, not many papers

have addressed the actual effort needed to fix software faults.

Objective: The objective of this paper is twofold: (1) analysis of the effort needed to fix software faults

and how it was affected by several factors and (2) prediction of the level of fix implementation effort

based on the information provided in software change requests.

Method: The work is based on data related to 1200 failures, extracted from the change tracking system

of a large NASA mission. The analysis includes descriptive and inferential statistics. Predictions are made

using three supervised machine learning algorithms and three sampling techniques aimed at addressing

the imbalanced data problem.

Results: Our results show that (1) 83% of the total fix implementation effort was associated with only

20% of failures. (2) Both post-release failures and safety-critical failures required more effort to fix than

pre-release and non-critical counterparts, respectively; median values were two or more times higher.

(3) Failures with fixes spread across multiple components or across multiple types of software artifacts

required more effort. The spread across artifacts was more costly than spread across components. (4) Sur-

prisingly, some types of faults associated with later life-cycle activities did not require significant effort.

(5) The level of fix implementation effort was predicted with 73% overall accuracy using the original, im-

balanced data. Oversampling techniques improved the overall accuracy up to 77% and, more importantly,

significantly improved the prediction of the high level effort, from 31% to 85%.

Conclusions: This paper shows the importance of tying software failures to changes made to fix all as-

sociated faults, in one or more software components and/or in one or more software artifacts, and the

benefit of studying how the spread of faults and other factors affect the fix implementation effort.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The cost of software faults is very high, not just because find-

ing and fixing faults increases the development and testing cost,

but also because of the consequences of field failures due to these

faults. According to a report from Cambridge University, software

developers spend on average 50% of their time finding and fixing

bugs, which leads to an estimated cost to the global economy of

$312 billion per year [1] . Similarly, Griss found that between 60

and 80% of the total development cost was spent on maintenance

and rework [2] , while Boehm and Basili claimed that software

projects spend 40–50% of their effort on avoidable rework [3] . This

∗ Corresponding author.

E-mail address: Katerina.Goseva@mail.wvu.edu (K. Goseva-Popstojanova).

paper is focused on analyzing factors that affect the effort needed

to fix software faults and the ability to predict it using the infor-

mation provided in software change requests (SCRs). Better under-

standing of software fixes associated with high effort and factors

that affect them support more cost-efficient software debugging

and maintenance. Furthermore, predicting the levels of software fix

implementation effort is useful for planning and proactively adjust-

ing resources in long-lived software systems that require sustained

engineering.

Before continuing, we provide definitions of the terms used in

this paper, which were adapted from the ISO/ IEC/ IEEE 24765 stan-

dard [4] . A failure is the inability of a system or component to per-

form its required functions within specified requirements. A fault is

an accidental condition or event, which if encountered, may cause

the system or component to fail to perform as required. Although

http://dx.doi.org/10.1016/j.infsof.2017.01.002

0950-5849/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: M. Hamill, K. Goseva-Popstojanova, Analyzing and predicting effort associated with finding and fixing software

faults, Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.01.002

http://dx.doi.org/10.1016/j.infsof.2017.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:Katerina.Goseva@mail.wvu.edu
http://dx.doi.org/10.1016/j.infsof.2017.01.002
http://dx.doi.org/10.1016/j.infsof.2017.01.002

2 M. Hamill, K. Goseva-Popstojanova / Information and Software Technology 0 0 0 (2017) 1–18

ARTICLE IN PRESS

JID: INFSOF [m5G; January 27, 2017;16:38]

Fig. 1. The cause-effect relationships among faults, failures and fixes.

every failure is caused by one or more faults, every fault does not

necessarily lead to a failure because the condition(s) under which

the fault(s) would result in a failure may never be met. To pre-

vent a specific failure from (re)occurring all faults associated with

that failure must be corrected. Therefore, we define an additional

term, fix , which refers to all changes made to correct the fault(s)

that caused an individual failure [5] . With respect to definitions

appearing elsewhere, the most similar to the term fix (as it is used

in this paper) appears to be the term repair, which is defined in

the ISO/IEC/IEEE 24765 standard [4] as the correction of defects

that have resulted from errors in external design, internal design,

or code. Fig. 1 illustrates the relationships among faults, failures,

and fixes. Note that we considered both observed failures that oc-

curred during operation and potential failures that were prevented

from happening by detecting and fixing faults during development

and testing.

Understanding the inner-workings of the complex relationships

among faults, failures and fixes, as well as the effort associated

with investigating failures and fixing faults, are important for cost-

efficient improvement of software quality. However, while a sig-

nificant amount of empirical studies have been focused on study-

ing software faults and/or failures, very few works have tied the

faults to the failures they caused and studied the relationships

among faults, failures, and fixes. One of the main reasons for this

is the difficulty to extract relevant information. Thus, even though

most software development projects use some sort of bug, problem

or issue tracking system, these systems often do not record how,

where, and by whom the problem in question was fixed [6] . Infor-

mation about fixes is typically hidden in the version control system

that records changes made to the source code. In most cases, it is

not identified if a change was made because of fixing fault(s), en-

hancement(s), or implementation of new feature(s). Furthermore,

not many projects keep track of the effort needed to investigate

failures and fix the corresponding faults.

This paper is part of a larger research effort aimed at character-

izing and quantifying relationships among faults, failures and fixes,

using the data extracted from a large safety-critical NASA mission.

The fact that the mission kept detailed records on the changes

made to fix fault(s) associated with each failure allowed us to

close the loop from failures to faults that caused them and changes

made to fix the faults. In our previous work we showed that soft-

ware failures are often associated with faults spread across multi-

ple files [7] . Our results further showed that a significant number

of software failures required fixes in multiple software components

and/or multiple software artifacts (i.e., 15% and 26%, respectively),

and that the combinations of software components that were fixed

together were affected by the software architecture [5] . More re-

cently, we studied types of faults that caused software failures, ac-

tivities taking place when faults were detected or failures were re-

ported, and severity of failures [8] . Our results showed that compo-

nents that experienced more failures pre-release were more likely

to fail post-release and that the distribution of fault types differed

for pre-release and post-release failures. Interestingly, both post-

release failures and safety-critical failures were more heavily asso-

ciated with coding faults than with any other type of faults.

In this paper we systematically explore the effort associated

with investigating and reporting the failures (i.e., investigation ef-

fort), as well as the effort associated with implementing the fix to

correct all faults associated with an individual failure (i.e., fix im-

plementation effort). We also focus on predicting the fix implemen-

tation effort using the data provided in the SCRs, when the fail-

ure was reported. Some related works in this area used the term

“fault correction effort”. We use the term “fix implementation ef-

fort” to emphasize that our focus is on the effort needed to fix (i.e.,

correct) all faults associated with an individual failure, rather than

individual software faults. Based on the processes followed by the

NASA mission and our discussions with project analysts, it appears

that the values of the effort data used in this paper are of high

quality. However, it should be noted that, as in any observational

study, it was infeasible to postmortem fully verify and validate the

accuracy of self-reported data, such as the investigation effort and

fix implementation effort.

It should be noted that investigation effort and fix implemen-

tation effort were not studied in our previous works. In gen-

eral, the analysis and prediction of software fix implementation

effort are much less explored topics than the analysis and pre-

diction of software development effort (see [9] and references

therein).

The first part of our study is focused on analysis of investigation

effort and fix implementation effort and factors that affect them.

We start with the research question:

RQ1: How are investigation effort and fix implementation effort

distributed across failures?

Then, we study if investigation effort and fix implementation

effort are affected by several factors, such as when failures were

detected / observed, severity of failures, spread of faults across

components and/or across software artifacts, and by types of faults

and types of software artifacts fixed. Each of these factors individ-

ually is addressed in research questions RQ2–RQ5:

RQ2: Are investigation effort and fix implementation effort asso-

ciated with post-release failures higher than corresponding

effort s associated with pre-release failures?

RQ3: Are investigation effort and fix implementation effort asso-

ciated with safety-critical failures higher than corresponding

effort s associated with non-critical failures?

RQ4: Do failures caused by faults spread across components or

across software artifacts require more effort?

RQ5: Is fix implementation effort affected by types of faults that

caused the failure and software artifacts being fixed?

We conclude the analysis part with RQ6 focused on the effect

of combinations of factors on the fix implementation effort with a

goal to uncover important interactions among factors that cannot

be observed by one-factor-at-a-time analysis.

RQ6: How do interactions among factors affect the fix implemen-

tation effort?

The second part of our study focuses on predicting the level of

fix implementation effort, that is, explores the research question:

RQ7: Can the level of fix implementation effort (i.e., high,

medium, or low) be predicted using the information entered

in the SCRs, when the failure was reported?

Please cite this article as: M. Hamill, K. Goseva-Popstojanova, Analyzing and predicting effort associated with finding and fixing software

faults, Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.01.002

http://dx.doi.org/10.1016/j.infsof.2017.01.002

Download English Version:

https://daneshyari.com/en/article/4972246

Download Persian Version:

https://daneshyari.com/article/4972246

Daneshyari.com

https://daneshyari.com/en/article/4972246
https://daneshyari.com/article/4972246
https://daneshyari.com

