
Information and Software Technology 87 (2017) 46–61 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

A design theory for software engineering 

Jon G. Hall ∗, Lucia Rapanotti 

School of Computing and Communications, The Open University, Milton Keynes, MK7 6AA, UK 

a r t i c l e i n f o 

Article history: 

Received 10 June 2016 

Revised 17 January 2017 

Accepted 24 January 2017 

Available online 6 February 2017 

Keywords: 

Software engineering 

Design theory 

General engineering 

Problem orientation 

Problem solving 

a b s t r a c t 

Context: Software Engineering is a discipline that has been shaped by over 50 years of practice. Many 

have argued that its theoretical basis has been slow to develop and that, in fact, a substantial theory of 

Software Engineering is still lacking. 

Objective: We propose a design theory for Software Engineering as a contribution to the debate. Having 

done this, we extend it to a design theory for socio-technical systems. 

Method: We elaborate our theory based on Gregor’s influential ‘meta-theoretical’ exploration of the struc- 

tural nature of a theory in the discipline of Information Systems, with particular attention to ontological 

and epistemological arguments. 

Results: We argue how, from an ontological perspective, our theory embodies a view of Software En- 

gineering as the practice of framing, representing and transforming Software Engineering problems. As 

such, theory statements concern the characterisation of individual problems and how problems relate 

and transform to other problems as part of an iterative, potentially backtracking, problem solving process, 

accounting for the way Software Engineering transforms the physical world to meet a recognised need. 

From an epistemological perspective, we argue how the theory has developed through research cycles 

including both theory-then-(empirical-)research and (empirical-)research-then-theory strategies spanning 

over a decade; both theoretical statements and related empirical evidence are included. 

Conclusion: The resulting theory provides descriptions and explanations for many phenomena observed 

in Software Engineering and in the combination of software with other technologies, and embodies an- 

alytic, explanatory and predictive properties. There are however acknowledged limitations and current 

research to overcome them is outlined. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Software Engineering (SE) is a discipline that has been shaped 

by over 50 years of practice. Driven primarily by the needs of in- 

dustry, a theoretical basis has been slow to develop. Recently, John- 

son et al. [1] have argued the need for theories which can address 

‘significant’ questions within SE. Their main criticisms are that ex- 

isting theories tend to be small, addressing limited sets of phe- 

nomena, very often implicit and only casually introduced by au- 

thors, with little academic discussion or rigorous evaluation within 

the community. Undoubtably, their arguments have stirred some 

debate in the wider SE community, and perhaps have been the 

catalyst for a renewed interest in the theoretical foundation of the 

discipline. 

∗ Corresponding author. 

E-mail addresses: jon.hall@open.ac.uk (J.G. Hall), lucia.rapanotti@open.ac.uk 

(L. Rapanotti). 

Our contribution is a design theory for SE which locates soft- 

ware as a solution within problem solving. The theory has de- 

veloped from our work on Problem Oriented Engineering (POE), 

a practical engineering framework with an accumulated body of 

work spanning over a decade, evaluated and validated through a 

number of real-world engineering case studies. In relation to pre- 

vious publications, one novel contribution is to make explicit the 

theory implicit in the definition. In fact, we contribute two design 

theories. The first concerns problems for which software is exclu- 

sively the solution; this is obviously limited given that other engi- 

neered artefacts, for instance, end-user documentation or training 

materials, will usually be needed as part of a solution. The second 

theory remedies this limitation. 

Our presentation is informed by Gregor’s [3] ‘meta-theoretical’ 

exploration of Information Systems (IS), particularly her ontologi- 

cal, epistemological and domain questions. 

The paper is organised as follows. Section 2 recalls the debate 

on the need for SE theories. Section 3 discusses the theoretical 

provenance of our theory, followed by its detailed presentation 

http://dx.doi.org/10.1016/j.infsof.2017.01.010 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2017.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.01.010&domain=pdf
mailto:jon.hall@open.ac.uk
mailto:lucia.rapanotti@open.ac.uk
http://dx.doi.org/10.1016/j.infsof.2017.01.010


J.G. Hall, L. Rapanotti / Information and Software Technology 87 (2017) 46–61 47 

in Sections 4 and 5 . An evaluation and discussion of ongoing re- 

search is given in Section 6 , while Section 7 discusses related work. 

Section 8 concludes the paper. 

2. Background 

2.1. The recent debate for on theory in SE 

Johnson et al. [1] constrain neither the form that a significant 

SE theory should have nor how it should be generated. In contrast, 

Adolph and Kruchten [4] argue that an SE theory ‘must be use- 

ful to practitioners and explain the phenomena they are experi- 

encing,’ whence proposing an empirical approach. Similarly, Ralph 

[5] argues for the usefulness of process theories in SE, providing 

both a taxonomy of process theory types and examples of where 

such theories could be beneficial. 

A complementary stance is taken by Staples [6] , who proposes 

that, alongside process theories, what SE needs are product theories 

if engineering concerns, such as performance, are to be taken into 

account. Accordingly, such product theories may not be exact, but 

only provide some conservative approximations to support assur- 

ance about the use of artefacts, i.e., they need only be general and 

precise enough to reason about whether an artefact meets accept- 

able requirements for use. A different perspective yet is taken by 

Smolander and Paivarinta [7] , who argue for the need of theories 

of practice focused on design and development practices, using a 

reflection-in-action approach to theory generation. 

Wieringa [8] argues that a desire for universal theory leads to 

theoretical idealisations unusable in practice. Instead, he suggests 

that ‘middle-range’ theories are more usable by practitioners. The 

case for middle-range theories is also made by Stol and Fitzger- 

ald [9] , 10 ], who describe them as stepping stones towards a more 

general and inclusive theory. 

More generally, the community is trying to come to terms with 

what is meant by ‘theory.’ There is some agreement on what is not 

considered a theory (e.g., [11] ) and much current thinking aligns 

closely with [3] , which constitutes the frame of reference for this 

paper. 

Finally, Ralph [12] , Johnson and Ekstedt [13] and others have 

considered how existing theories, such as complexity and cognition 

theories, might contribute to a general SE theory. 

It appears that current work is speculative: we are still a long 

way away from an agreement on what the characteristics of a SE 

theory should be. 

2.2. Gregor’s meta-theoretical model 

Gregor [3] explores IS theory. Given the strong relation between 

SE and IS, much of her analysis extends naturally to SE and has 

been adopted in that community. 

Gregor’s exploration asks four distinct categories of question: 

core domain questions — the phenomena of interest and the 

boundary of the discipline; structural or ontological questions — the 

nature of theory and the form that knowledge contributions make; 

epistemological questions — how the theory is constructed, the re- 

search method used and the way knowledge is accumulated; and 

socio-political questions — concerning the socio-political context in 

which a theory was developed. 

Gregor’s argues that an IS theory should be able to link natural, 

social and artificial worlds, drawing upon their respective design 

sciences, and that a wide view of theory should be taken. This also 

makes sense for SE and reflects the current SE community view. 

Gregor also sees no requirement to commit to one specific episte- 

mological view, also mirrored in the current SE debate. 

Gregor [3] concludes that some combination of the following is 

essential: 

• description and analysis: to describe phenomena of interest 

and related constructs, to generalise them within an identified 

scope, and to analyse their relationships; 

• explanation: to comment on ‘how, why, and when things hap- 

pened, relying on varying views of causality and methods for 

argumentation’; 

• prediction: to predict what will happen in the future under 

specified conditions; and 

• prescription: to allow the definition of methods or “recipes for 

doing” which, if followed, will make theory predictions true un- 

der specified conditions. 

The last quality is notable in relating theory and method: al- 

though methods can follow theories, they are not the same thing 

[5] . 

3. Research cycle and theory conceptualisation 

Our design theory is based on a body of work accumulated 

in over a decade of research into a design-theoretic approach to 

problem solving in the context of software and systems engineer- 

ing. The research cycle adopted has included both theory-then- 

(empirical-)research and (empirical-)research-then-theory strate- 

gies, starting from an initial theoretical proposition [14] . We 

present our theory in detail alongside a discussion of the empir- 

ical evidence accumulated in its support, and of aspects for which 

both theoretical and empirical work is still required. 

3.1. Theoretical provenance 

G.F.C Rogers defined engineering as [15] : 

the practice of organising the design and construction of any 

artifice 1 which transforms the physical world around us to meet 

some recognised need. 

Rogers’ definition places engineering in the problem solving 

domain, the problem being, given a real world environment and 

need, to design and construct an artifice with the requisite proper- 

ties. 

This definition specialises easily to Software Engineering simply 

by taking the artifice to be software, giving 

software engineering is the practice of organising the design 

and construction of software which transforms the physical 

world around us to meet a recognised need. 

This ‘software-as-artifice’ perspective is deficient: 

• that software is the sole artifice implies that the environment 

has a particular form, one in which software causes become 

physical effects, and vice-versa ; 

• we cannot, ab initio , know the precise combination of solution 

technologies that will ultimately satisfy the need, even less that 

software will be the sole solution technology. 

Whereas the first of these can easily be discharged by careful 

choice of environment, the second is more difficult and motivates 

our second theory: it is likely that through solution technology 

combinations, both formal software and non-formal solution do- 

mains will need to be combined. But then, as Turski [16] observed: 

There are two fundamental difficulties involved in dealing with 

non-formal domains (also known as ‘the real world’): 

1. Properties they enjoy are not necessarily expressible in any sin- 

gle linguistic system. 

1 Rogers appears to use artifice rather than, for instance, artefact to emphasise 

that a solution may have no physical embodiment, as is the case with software. 



Download English Version:

https://daneshyari.com/en/article/4972249

Download Persian Version:

https://daneshyari.com/article/4972249

Daneshyari.com

https://daneshyari.com/en/article/4972249
https://daneshyari.com/article/4972249
https://daneshyari.com

