
ARTICLE IN PRESS 

JID: INFSOF [m5G; September 30, 2016;21:56 ] 

Information and Software Technology 0 0 0 (2016) 1–13 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Automated triaging of very large bug repositories 

Sean Banerjee 

a , ∗, Zahid Syed 

b , Jordan Helmick 

c , Mark Culp 

d , Kenneth Ryan 

d , Bojan Cukic 

e 

a Clarkson University, Potsdam, NY, USA 
b University of Michigan - Flint, Flint, MI, USA 
c MedExpress, Morgantown, WV, USA 
d West Virgina University, Morgantown, WV, USA 
e University of North Carolina - Charlotte, Charlotte, NC, USA 

a r t i c l e i n f o 

Article history: 

Received 28 February 2016 

Revised 18 September 2016 

Accepted 20 September 2016 

Available online xxx 

Keywords: 

Automated triaging 

Bug tracking 

Big data analytics 

Software problem repositories 

a b s t r a c t 

Context: Bug tracking systems play an important role in software maintenance. They allow both devel- 

opers and users to submit problem reports on observed failures. However, by allowing anyone to submit 

problem reports, it is likely that more than one reporter will report on the same issue. Research in open 

source repositories has focused on two broad areas: determining the original report associated with each 

known duplicate, and assigning a developer to fix a particular problem. 

Objective: Limited research has been done in developing a fully automated triager, one that can first 

ascertain if a problem report is original or duplicate, and then provide a list of 20 potential matches for 

a duplicate report. We address this limitation by developing an automated triaging system that can be 

used to assist human triagers in bug tracking systems. 

Method: Our automated triaging system automatically assigns a label of original or duplicate to each 

incoming problem report, and provides a list of 20 suggestions for reports classified as duplicate. The 

system uses 24 document similarity measures and associated summary statistics, along with a suite of 

document property and user metrics. We perform our research on a lifetime of problem reports from the 

Eclipse, Firefox and Open Office repositories. Results: Our system can be used as a filtration aide, with 

high original recall exceeding 95% and low duplicate recall, or as a triaging guide, with balanced recall of 

approximately 70% for both originals and duplicates. Furthermore, the system reduces the workload on 

the triager by over 90%. 

Conclusions: Our work represents the first full scale effort at automatically triaging problem reports 

in open source repositories. By utilizing multiple similarity measures, we reduce the potential of false 

matches caused by the diversity of human language. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Tracking bug reports is one of the best practices in the main- 

tenance of computer software. Bug reports are submitted by both 

developers and users of the system. Allowing users to submit bug 

reports provides developers with continuous feedback about the 

operational behavior of their product. However, submitted reports 

vary in quality, and it is often difficult to understand what is be- 

ing reported. Bug reports are initially classified through a process 

called triaging. An analyst, commonly called a triager, must deter- 

mine whether a newly submitted report describes a previously un- 

∗ Corresponding author. 

E-mail addresses: sbanerje@clarkson.edu (S. Banerjee), zahsyed@umflint.edu 

(Z. Syed), jordan.helmick@medexpress.com (J. Helmick), mvculp@mail.wvu.edu (M. 

Culp), kjryan@mail.wvu.edu (K. Ryan), bcukic@uncc.edu (B. Cukic). 

reported issue or a previously reported issue. We refer to the for- 

mer as an original report, while the latter is called a duplicate re- 

port. 

Manual triaging of bug reports is both challenging and time 

consuming. The very nature of the English language entails that 

two people can use vastly different language to describe the same 

issue. For example, bug reports #2478 and #2644 in Mozilla de- 

scribe the same issue, yet share little similarity in language. An 

inexperienced triager or a machine could easily mistake the re- 

ports as being distinct from each other. Similarly, an individual can 

use nearly identical language to describe two completely different 

issues. For example, reports #123376 and #123734 in Eclipse de- 

scribe different issues, and yet share nearly every word in com- 

mon. An inexperienced triager or a machine could easily be fooled 

into thinking the reports describe the same issue, when in fact 

the subtle difference is the build date. Anvik et al. [10] reported 

http://dx.doi.org/10.1016/j.infsof.2016.09.006 

0950-5849/© 2016 Published by Elsevier B.V. 

Please cite this article as: S. Banerjee et al., Automated triaging of very large bug repositories, Information and Software Technology 

(2016), http://dx.doi.org/10.1016/j.infsof.2016.09.006 

http://dx.doi.org/10.1016/j.infsof.2016.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:sbanerje@clarkson.edu
mailto:zahsyed@umflint.edu
mailto:jordan.helmick@medexpress.com
mailto:mvculp@mail.wvu.edu
mailto:kjryan@mail.wvu.edu
mailto:bcukic@uncc.edu
http://dx.doi.org/10.1016/j.infsof.2016.09.006
http://dx.doi.org/10.1016/j.infsof.2016.09.006


2 S. Banerjee et al. / Information and Software Technology 0 0 0 (2016) 1–13 

ARTICLE IN PRESS 

JID: INFSOF [m5G; September 30, 2016;21:56 ] 

in 2005 that Mozilla employees triage over 300 bug reports per 

day. Our own experience indicates that 10 years later, Mozilla still 

receives over 350 reports per day. Other repositories, such as Red- 

Hat receives over 330 reports per day, Novell receives over 150 

reports per day and Eclipse receives over 80 reports per day. To- 

day, repositories from RedHat and Mozilla contain over 1.2 million 

and 1.1 million bug reports respectively, the Novell repository ex- 

ceeds 950,0 0 0 reports and the Eclipse repository exceeds 480,0 0 0 

reports. Thus, it should not be difficult to appreciate the human ef- 

fort required in triaging bug reports for large open source projects 

and understand the need for automation. 

While many papers claim contributions to “duplicate bug report 

detection”, we note that the focus is on finding a “match” that al- 

ready exists in the repository for a report that has already been 

assumed to be a duplicate a priori . In reality, a triager or an auto- 

mated system will have no knowledge of whether an incoming re- 

port is original or duplicate. The resulting tools suggest the link be- 

tween this duplicate bug report and the report that originally de- 

scribed the problem. Typical research results offer a list of 20 best 

matches for a known duplicate report. Having the correct match 

in the list of 20 candidates is considered a successful outcome, as 

the triage team now analyzes a short list of potentially matching 

reports rather than the contents of the entire repository. Related 

research therefore answers the question: “Given that the report is 

a duplicate, what are its most likely matches?” In practice, a priori 

knowledge that the new report is, indeed, a duplicate is a strong 

assumption. In this work we address this assumption by building 

a tool that determines whether the incoming report is an original 

or a duplicate. In our work, the status of all incoming bug reports 

is initially set to unknown. The reports are subsequently classified 

as original or duplicate based on the analysis of their features and 

comparison with the previously submitted reports. If determined 

to likely be a duplicate, a set of 20 potential matches are gener- 

ated and provided to the user. 

It can be argued that the “duplicate bug report detection” can 

be formulated as detecting original vs. duplicate reports. A top 

20 list of best matches can be generated for every bug report in 

the repository, and presented to the triager. A triager would then 

manually inspect the bug report and the associated 20 matches to 

decide if the report is original or duplicate. This approach would 

increase the workload on the triager by several orders, as the 

triager now has to read not just the original report, but through 

20 additional reports to determine if the suggestions are by ran- 

dom chance or true duplication. The correct approach to auto- 

mated triaging is to provide the triager with reports that are “hard”

to classify automatically. Reports that can be classified as original 

should be sent to the developers to fix. Our approach follows this 

paradigm, we provide triagers with reports that our system classi- 

fies as duplicate and ask for a manual inspection, thereby reducing 

their workload by over 90%. 

The techniques applied in related work has also solely focused 

on similarity metrics combined with report metrics, while ignoring 

the human user. In [13] , we demonstrated that the experience of 

the user greatly affects the type of report that they submit. In our 

approach the user demographics are summarized and used as a 

feature in the classification process. Moreover, the techniques pro- 

posed in prior research for finding duplicate bug reports have been 

evaluated on relatively small subsets of bug repositories as shown 

in Table 1 . This can be misleading because the performance of such 

techniques will likely degrade as the number of reports in the 

repository increases [26,28,29] . Therefore, the long term accuracy 

of automated bug report management in large scale open source 

projects will remain unclear until the empirical analysis is based 

on large and diverse samples of bug reports. We address this by 

utilizing a lifetime of reports from 3 diverse projects - Eclipse, Fire- 

fox and Open Office. It can be argued that time and cost precludes 

Table 1 

Scalability challenge in duplicate problem report classification. 

Dataset Range Recall Reports % of Dataset 

Eclipse Jan 2008 – Dec 2008 68% [29] 2013 6% 

Eclipse Start – Dec 2009 46% [30] 2270 6% 

Eclipse Jan 2008 – Dec 2008 78% [28] 3080 8% 

Eclipse Start – Dec 2007 71% [28] 27 ,495 100% 

Firefox Apr 2004 – Jun 2004 93% [31] 77 0 .44% 

Firefox Apr 2002 – Jul 2007 53% [29] 3307 12% 

Firefox Apr 2002 – Jul 2007 70% [29] 3307 12% 

Firefox Start – Jun 2010 53% [27] 19 ,480 50% 

Firefox Start – Mar 2012 68% [12] 25 ,045 50% 

Firefox Start – Sept 2005 50% [21] 8070 85% 

Mozilla Jan 2010 – Dec 2010 68% [28] 6925 5% 

Mozilla Feb 2005 – Oct 2005 51% [23] 8225 7% 

researchers from analyzing complete repositories. As we demon- 

strated in [11] , distributed techniques can be applied that relies on 

utilizing unused computing resources found in most academic in- 

stitutions. 

It can also be argued that Bugzilla, or other issue tracking sys- 

tems, provide a rudimentary framework for assessing whether a 

report is novel or not [1] . However, the Bugzilla search tool uses 

a Boolean search on the title of the report, which consists of less 

than 10 words on average. Thus, unless the reporter is using very 

similar terminology as an existing report, an effective match will 

not be made. As a result, the submitter may inadvertently submit 

a duplicate report which has to be read by a human triager to as- 

certain its true status. An automated tool which can flag reports as 

original or duplicate can greatly assist the triager. 

Our prior research in the domain has demonstrated the effect of 

time on classifying duplicate problem reports [27] , and in [12] we 

demonstrated that subsequence matching techniques can address 

the loss of context challenges faced in frequency based approaches. 

Our work in [14] shows how a multi-label classification approach 

can alleviate the challenges faced in frequency and sequence based 

approaches. We also introduced a set of features that were used to 

determine the most effect similarity measure for each problem re- 

port. The true nature of problem repositories was explored in [13] , 

where we showed the quality of reports submitted in relation to 

the experience of the submitter. Finally, in [11] we presented a 

detailed cost analysis associated with mining large scale problem 

repositories. 

In this paper, we present a system that can classify each incom- 

ing bug report as either an original or a duplicate by extracting a 

novel set of features associated with the reporter, the report and 

the extent of similarity to prior reports. Reports that are classified 

as duplicate are then tagged with a list of 20 potential matches. 

These features are designed to provide multiple viewpoints into 

the content of reports, and offer an extensive yet diverse set of 

features allowing the automatic system to differentiate between 

original and duplicate reports. We further propose several learn- 

ing approaches to classification, each geared towards a particular 

practical consideration. 

The major contributions of this paper include: 

1. A detailed description of a novel automated framework for clas- 

sifying bug reports as originals or duplicates. 

2. A novel set of features associated with the similarity scores, re- 

port and reporter that can be used to automatically classify bug 

reports. 

3. A demonstration, through empirical study, that this approach 

reaches high accuracy when applied to the entire Eclipse, Fire- 

fox and Open Office repositories. 

Please cite this article as: S. Banerjee et al., Automated triaging of very large bug repositories, Information and Software Technology 

(2016), http://dx.doi.org/10.1016/j.infsof.2016.09.006 

http://dx.doi.org/10.1016/j.infsof.2016.09.006


Download English Version:

https://daneshyari.com/en/article/4972266

Download Persian Version:

https://daneshyari.com/article/4972266

Daneshyari.com

https://daneshyari.com/en/article/4972266
https://daneshyari.com/article/4972266
https://daneshyari.com

