
ARTICLE IN PRESS 

JID: INFSOF [m5G; April 4, 2017;17:58 ] 

Information and Software Technology 0 0 0 (2017) 1–27 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Risk-averse slope-based thresholds: Definition and empirical 

evaluation 

Sandro Morasca 

∗, Luigi Lavazza 

Università degli Studi dell’Insubria, Department of Theoretical and Applied Sciences, Italy 

a r t i c l e i n f o 

Article history: 

Received 19 September 2016 

Revised 4 March 2017 

Accepted 16 March 2017 

Available online xxx 

Keywords: 

Fault-proneness 

Faultiness 

Threshold 

Software measures 

Logistic regression 

Probit regression 

Risk-aversion 

a b s t r a c t 

Background . Practical use of a measure X for an internal attribute (e.g., size, complexity, cohesion, cou- 

pling) of software modules often requires setting a threshold on X , to make decisions as to which mod- 

ules may be estimated to be potentially faulty. To keep quality under control, practitioners may want to 

set a threshold on X to identify “early symptoms” of possible faultiness of those modules that should be 

closely monitored and possibly modified. 

Objective . We propose and evaluate a risk-averse approach to setting thresholds on X based on properties 

of the slope of statistically significant fault-proneness models, to identify “early symptoms” of module 

faultiness. 

Method . To this end, we introduce four ways for setting thresholds on X . First, we use the value of X 

where a fault-proneness model curve changes direction the most, i.e., it has maximum convexity. Then, 

we use the values of X where the slope has specific values: one-half of the maximum slope, and the 

median and mean slope in the interval between minimum and maximum slopes. 

Results . We provide the theoretical underpinnings for our approach and we apply our approach to data 

from the PROMISE repository by building Binary Logistic and Probit regression fault-proneness models. 

The empirical study shows that the proposed thresholds effectively detect “early symptoms” of module 

faultiness, while achieving a level of accuracy in classifying faulty modules close to other usual fault- 

proneness thresholds. 

Conclusions . Our method can be practically used for setting “early symptom” thresholds based on evi- 

dence captured by statistically significant models. Also, the thresholds depend on characteristics of the 

models alone, so project managers do not need to devise the thresholds themselves. The proposed thresh- 

olds correspond to increasing risk levels, so project managers can choose the threshold that best suits 

their needs in a risk-averse framework. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The assessment of the fault-proneness of software modules can 

help software practitioners along the software life cycle and soft- 

ware researchers in the evaluation and improvement of software 

development techniques. By the term “module,” we denote any 

piece of software (e.g., routine, method, class, package, subsystem, 

system) in the remainder of the paper. 

Fault-proneness is an “external” software attribute [1] that can 

be defined as the probability that a software module contains a 

fault. Fault-proneness, according to Measurement Theory [2,3] , is 

∗ Corresponding author . 

E-mail addresses: sandro.morasca@uninsubria.it (S. Morasca), 

luigi.lavazza@uninsubria.it (L. Lavazza). 

quantified by means of estimation models (which we call fault- 

proneness models) whose independent variables are measures 

taken from modules or from the software development process. 

For simplicity, in this paper we only use ratio measures [2] taken 

on modules, which quantify “internal” software attributes like size, 

structural complexity, cohesion, and coupling. Also, for illustra- 

tion’s sake, we deal with univariate models (i.e., with one inde- 

pendent variable) until Section 8 , where we show how to extend 

our results to multivariate models (i.e., with more than one inde- 

pendent variable). Finally, we also assume in most of the paper 

that a fault-proneness model fp ( X ) is a monotonically increasing 

function of its independent variable X , as is often the case in Em- 

pirical Software Engineering. We highlight the differences with the 

case of monotonically decreasing fault-proneness models whenever 

needed, notably in Section 7 . 

http://dx.doi.org/10.1016/j.infsof.2017.03.005 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: S. Morasca, L. Lavazza, Risk-averse slope-based thresholds: Definition and empirical evaluation, Information 

and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.03.005 

http://dx.doi.org/10.1016/j.infsof.2017.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:sandro.morasca@uninsubria.it
mailto:luigi.lavazza@uninsubria.it
http://dx.doi.org/10.1016/j.infsof.2017.03.005
http://dx.doi.org/10.1016/j.infsof.2017.03.005


2 S. Morasca, L. Lavazza / Information and Software Technology 0 0 0 (2017) 1–27 

ARTICLE IN PRESS 

JID: INFSOF [m5G; April 4, 2017;17:58 ] 

At any rate, the sheer knowledge of the value of fault-proneness 

of a module may not be sufficient in practice. It would be very 

useful to practitioners to have indications on whether a module 

should be considered faulty or non-faulty, i.e., on a binary scale, 

and not just more or less fault-prone, i.e., on a continuous scale. 

These indications can be used during software development to 

identify which modules need to undergo stricter Validation & Ver- 

ification (V&V), maybe even before they are tested. Thus, these in- 

dications can be usefully based on the values of an internal mea- 

sure computed on the modules. As a consequence, we need a cri- 

terion to partition modules into those that can be estimated faulty 

and those that can be estimated non-faulty based on the value of 

an internal measure X . Usually, the values of X are partitioned by 

means of a threshold value x t and modules with X ≤ x t are esti- 

mated non-faulty and modules with X > x t faulty. 

1.1. Properties for threshold setting 

Clearly, this approach is effective only if the threshold is set in 

a sensible way. However, the definition of the value of x t is some- 

what arbitrary. We believe that threshold setting should satisfy the 

following four properties. 

TSP1 A threshold should be set to take into account the practi- 

tioners’ goals: as a consequence, different ways of setting 

thresholds may be used in different cases. 

TSP2 A threshold on X should be set only if there is evidence that 

X is related to the likelihood of having faults. Specifically, 

we require that a statistically significant fault-proneness 

model exists where X is the independent variable. 

TSP3 A threshold may be based on the characteristics of the spe- 

cific fault-proneness model. Thus, different thresholds on 

X may be set with different fault-proneness models for X , 

built with different techniques. 

TSP4 Since X is a ratio scale, any threshold on it should be in- 

variant up to a proportional transformation. Thus, if we 

transform variable X into a new variable Y , with X = kY for 

some given k and if x t is a threshold for X , the correspond- 

ing threshold y t on Y is such that x t = k · y t . We show in 

Section 9 an example of an approach that may appear to 

be sensible, but does not satisfies these requirements. 

Here is a possible two-step approach that can be used to satisfy 

these properties. 

(A) First, a specified maximum acceptable threshold value of 

fault-proneness fp t is set, based on a number of factors, e.g., 

economic ones, related to the costs associated with 1) mon- 

itoring or acting on modules that are not actually faulty and 

2) not monitoring or not acting on modules that are actually 

faulty. 

(B) Second, the value of fp t is used to partition the values of 

X into two classes: the values x such that fp ( x ) > fp t are 

estimated to be related to possibly faulty modules and the 

others are estimated to be related to possibly non-faulty 

modules. As fp ( x ) is monotonically increasing, there exists 

one value x t such that f p(x t ) = f p t . For instance, consider 

Fig. 1 (a) of Section 10.1 , where several candidate values for 

fp t are shown. Setting f p t = 0 . 5 (shown in the figure as the 

“Fifty” threshold) entails setting a threshold on CBO equal to 

cbo t = 10 . 

This is one of the ways the information about the relationship 

between X and fault-proneness can be used, as recommended by 

Bender in epidemiological studies [4] , and also referenced in some 

of the literature on the setting of thresholds in Empirical Software 

Engineering [5,6] . 

Bender also suggests an alternative approach, in which a 

threshold on X is defined to mark the point where the slope of 

the estimation model becomes “too steep.” Thus, the focus is no 

longer on fp ( x ), but on fp ′ ( x ), which is the first derivative of fp ( x ). 

1.2. Goal of the paper 

The goal of this paper is to show how fp ′ ( x ), i.e., the slope 

of fp ( x ), can be used to set thresholds on X , by introducing two 

different kinds of proposals. In both cases, the underlying idea is 

that during development, some software managers may prefer to 

closely monitor a module, or even take action on it, not when its 

fault-proneness is already past a specified fault-proneness thresh- 

old, but at the “early symptoms” of possible faultiness, based on 

the variations in a fault-proneness model, rather than the value of 

fault-proneness itself. Our two approaches look at those variations 

in two different ways. 

• Suppose that a software module evolves over time and that the 

value of X increases. Typically, the graph of fp ( x ) shows that, 

at the beginning of the evolution of the module, i.e., for small 

values of X , even fairly large variations in X imply small varia- 

tions in fault-proneness, i.e., fp ( x ) is rather “flat.” For instance, 

Fig. 1 (b) shows that fault-proneness stays practically nil for val- 

ues of CBO (Coupling Between Objects) up to about 4. As it in- 

creases, however, X will reach a value past which fp ( x ) begins 

to depart too fast from the low-risk “flat,” “safe” area. 

Thus, our first proposal is to define the threshold as the value 

of X in which fp ( x ) bends the most, i.e., the point that best sep- 

arates the region of the x -axis in which fp ( x ) is “flat” from the 

rest of the x -axis. This point is the one in which the convexity 

of fp ( x ) is maximum. 

Note that fp ( x ) is not necessarily “too steep” when it has its 

maximum convexity. For instance, as Fig. 1 (b) shows, fp ( x ) is 

steepest when X = 10 , but waiting to act on a module until X 

reaches 10 or a value like 8—which may be “too steep” because 

it is “close” to 10—may be regarded as too late (in Fig. 1 (b), 

X is 6.5 when convexity is maximum). Note also that fp ( x ) is 

not necessarily “too high” when it has its maximum convexity. 

Actually, since we are interested in identifying the “early symp- 

toms” of possible faultiness, we want to identify them well be- 

fore fp ( x ) becomes “too high.”

• Other software managers may instead prefer to closely monitor 

a module, or even take action on it, when X reaches a point 

where even small variations of X no longer imply relatively 

harmless fault-proneness variations. For instance, possible small 

changes to a software module may entail large changes in its 

fault-proneness, and this may be viewed as an “early symptom”

of potential problems with the module. 

Our second proposal is therefore to define thresholds as the 

points in which the slope of fp ( x ) assumes specific values. One 

possibility is to choose the point where the slope is a specified 

fraction of the maximum slope of fp ( x ), e.g., one-half. Other op- 

tions consist in setting the threshold where the slope value is 

the median or the mean of the slopes in the interval between 

the two points with the minimum and the maximum slopes. 

In all these cases, the idea is that the threshold divides the val- 

ues of X into two disjoint subsets: values characterized by “flat”

slopes (less than one half of the maximum, or less than the me- 

dian or mean slope) and values characterized by “steep” slopes 

(more than one half of the maximum, or more than the me- 

dian or mean slope). Software project managers need to chose 

one of these criteria, based on a number of factors, including 

economic ones, like in step (A) above. 

Thus, our slope-based proposals reflect two truly different ap- 

proaches to managing risk-aversion. 

Please cite this article as: S. Morasca, L. Lavazza, Risk-averse slope-based thresholds: Definition and empirical evaluation, Information 

and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.03.005 

http://dx.doi.org/10.1016/j.infsof.2017.03.005


Download English Version:

https://daneshyari.com/en/article/4972269

Download Persian Version:

https://daneshyari.com/article/4972269

Daneshyari.com

https://daneshyari.com/en/article/4972269
https://daneshyari.com/article/4972269
https://daneshyari.com

