
ARTICLE IN PRESS 

JID: INFSOF [m5G; March 31, 2017;19:8 ] 

Information and Software Technology 0 0 0 (2017) 1–14 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Findings from a multi-method study on test-driven development 

Simone Romano 

a , ∗, Davide Fucci b , Giuseppe Scanniello 

a , Burak Turhan 

b , Natalia Juristo 

c 

a University of Basilicata, Viale Dell’Ateneo 10, Macchia Romana, Potenza, Italy 
b M3S, University of Oulu, Pentti Kaiteran katu 1, Oulu, Finland 
c Facultad de Informatica, Universidad Politecnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain 

a r t i c l e i n f o 

Article history: 

Received 26 September 2016 

Revised 13 March 2017 

Accepted 20 March 2017 

Available online xxx 

Keywords: 

Ethnographically-informed study 

Qualitative study 

Test driven development 

a b s t r a c t 

Context: Test-driven development (TDD) is an iterative software development practice where unit tests 

are defined before production code. A number of quantitative empirical investigations have been con- 

ducted about this practice. The results are contrasting and inconclusive. In addition, previous studies fail 

to analyze the values, beliefs, and assumptions that inform and shape TDD. 

Objective: We present a study designed, and conducted to understand the values, beliefs, and assump- 

tions about TDD. Participants were novice and professional software developers. 

Method: We conducted an ethnographically-informed study with 14 novice software developers, i.e., 

graduate students in Computer Science at the University of Basilicata, and six professional software de- 

velopers (with one to 10 years work experience). The participants worked on the implementation of a 

new feature for an existing software written in Java. We immersed ourselves in the context of our study. 

We collected qualitative information by means of audio recordings, contemporaneous field notes, and 

other kinds of artifacts. We collected quantitative data from the integrated development environment to 

support or refute the ethnography results. 

Results: The main insights of our study can be summarized as follows: (i) refactoring (one of the phases 

of TDD) is not performed as often as the process requires and it is considered less important than other 

phases, (ii) the most important phase is implementation, (iii) unit tests are almost never up-to-date, and 

(iv) participants first build in their mind a sort of model of the source code to be implemented and only 

then write test cases. The analysis of the quantitative data supported the following qualitative findings: 

(i), (iii) , and (iv) . 

Conclusions: Developers write quick-and-dirty production code to pass the tests, do not update their tests 

often, and ignore refactoring. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Test-driven development (TDD) is an iterative software devel- 

opment practice within agile methodologies [1] . It requires devel- 

opers to follow three phases: The red phase causes a shift in mind- 

set from the test-last approach to the test-first approach, while 

the green phase only develops enough code to pass the tests and 

the refactoring phase focuses on design quality through refactoring 

operations and uses a set of regression test cases as a safety net. 

It is claimed that TDD leads to better code quality due to its fo- 

cus on testing, and improves developers’ confidence in their source 

∗ Corresponding Author. 

E-mail addresses: simone.romano@unibas.it (S. Romano), 

davide.fucci@oulu.fi (D. Fucci), giuseppe.scanniello@unibas.it (G. Scanniello), 

Burak.Turhan@oulu.fi (B. Turhan), natalia@fi.upm.es (N. Juristo). 

code [2] . Based on this claim, some software organizations have 

been quick to adopt TDD, while others are still evaluating its ben- 

efits in terms of cost, quality, and productivity [3,4] . 

To assess TDD, a number of primary (e.g., controlled- and quasi- 

experiments) and secondary (e.g., systematic literature reviews) 

empirical studies have been conducted. Primary studies (e.g., [5,6] ) 

have been quantitative in nature and have produced contrast- 

ing or inconclusive results [7] . The secondary studies summarize 

the empirical research results regarding TDD by aggregating, to a 

varying extent, the evidence from controlled experiments, quasi- 

experiments, and case studies [3,4,7,8] . 

TDD has been marginally investigated from a qualitative point 

of view and from the perspective of the developer [9,10] . Qual- 

itative studies, unlike quantitative ones, inquire into the under- 

lying reasons and motivations behind a given phenomenon [11] . 

Among the kinds of qualitative methodological approaches, an 

http://dx.doi.org/10.1016/j.infsof.2017.03.010 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: S. Romano et al., Findings from a multi-method study on test-driven development, Information and Software 

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.03.010 

http://dx.doi.org/10.1016/j.infsof.2017.03.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:simone.romano@unibas.it
mailto:davide.fucci@oulu.fi
mailto:giuseppe.scanniello@unibas.it
mailto:Burak.Turhan@oulu.fi
mailto:natalia@fi.upm.es
http://dx.doi.org/10.1016/j.infsof.2017.03.010
http://dx.doi.org/10.1016/j.infsof.2017.03.010


2 S. Romano et al. / Information and Software Technology 0 0 0 (2017) 1–14 

ARTICLE IN PRESS 

JID: INFSOF [m5G; March 31, 2017;19:8 ] 

ethnographically-informed study forces researchers to attend to 

the taken-for-granted, accepted, and un-remarked aspects of a 

practice, considering all activities as “strange” so as to prevent 

the researchers’ own backgrounds from affecting their observa- 

tions [12] . In this type of study, researchers immerse themselves in 

the study context, participate in the study (e.g., by joining in con- 

versations, attending meetings, reading documents), and observe 

participants without prejudice or prior assumptions [13] . 

In this paper, we present the results of an empirical study 

involving students and professional software developers. We in- 

volved 14 graduate students in Computer Science at the Univer- 

sity of Basilicata, and six professional developers with one to 10 

years’ work experience. We asked participants to work in pairs, 

each pair is composed of a driver and a pointer developer. The 

goal of our study is to gain insights into how developers apply 

TDD and deal with each of its phases. In particular, we sought 

to explore the values, beliefs, and assumptions that inform and 

shape the application of TDD and its phases. Given this motiva- 

tion, our methodological approach can be characterized as ethno- 

graphic [14–16] . We asked the participants to perform an imple- 

mentation task. In particular, they had to add new functionality to 

an existing software implemented in Java using Eclipse. This soft- 

ware is a complex, industrial-like case of which participants had 

some knowledge. The first author immersed himself in the study 

environment, participated in conversations, and asked the partici- 

pants how they were applying TDD to perform the assigned imple- 

mentation task. We collected information by means of contempo- 

raneous field notes, audio recordings of discussions, and copies of 

the artifacts produced by the participants during the implementa- 

tion. Fine-grained data about the participants’ application of TDD 

was also gathered through an automated tool installed in the par- 

ticipants’ integrated development environment (IDE). This tool is 

intended as an Eclipse plug-in and runs in the background with- 

out interfering with the IDE use. We analyzed TDD conformance 

data to support or reject the qualitative findings. This is why we 

consider this as a multi-method study. 

This study builds on a previous study [17] in the following 

ways: 

• We described our ethnographically-informed study with more 

details. 

• We extended the related work section by including a review of 

quantitative studies relevant for the approach we used to trian- 

gulate the results. 

• We triangulated the initial qualitative results with analyses of 

quantitative data. We cross-referenced the results of both anal- 

yses and improved the discussion of the attained outcomes and 

conclusions. 

In summary, we make the following contributions: 

• We present the implications of the results from an 

ethnographically-informed study with nine pairs of devel- 

opers; three of these pairs were professionals. To the best 

of our knowledge this is the first of such studies explicitly 

tackling TDD. 

• We provide a triangulation of the results based on quantitative 

data extracted from the developers’ IDE. 

• We delineate future research to investigate the specificities be- 

hind the application of TDD. 

The remainder of the paper is organized as follows. In Section 2 , 

we discuss related work. In Section 3 , we explain our method, 

while in Section 4 , we present our findings. We show and discuss 

our findings in Section 5 . In Section 6 , we highlight limitations of 

these findings. Final remarks and future work conclude the paper. 

2. Related work 

In this section, we first discuss ethnographically-informed stud- 

ies in software engineering and papers reporting quantitative and 

qualitative investigations on TDD. 

2.1. Ethnographically-informed studies in software engineering 

Ethnography is a qualitative research method for studying peo- 

ple and cultures. This method is largely adopted in disciplines 

outside software engineering [14] . However, the importance of 

ethnography, and the challenges associated with adoption from so- 

cial sciences have been tackled in other areas of computer sci- 

ence, like computer-supported cooperative work [18] . In other sub- 

fields—e.g., software system design and interaction—ethnography is 

becoming progressively relevant [19] . In the context of software 

engineering, ethnography could provide an in-depth understanding 

of the socio-technological realities surrounding everyday software 

development practices [16] . That is, ethnography could help to un- 

cover not only what practitioners do, but also why they do it. De- 

spite its potential, little ethnographic research exists in the field of 

software engineering [16] . For example, Beynon-Davies [20] iden- 

tified a number of uses of uses for ethnographic research in infor- 

mation systems development. In particular, the author noted that 

for researchers in the software engineering field, ethnographic re- 

search may provide value in the area of software development, 

specifically in the process of capturing tacit knowledge during the 

software life cycle. Later, Beynon-Davies et al. [21] used ethno- 

graphic research on rapid application development to uncover the 

negotiated order of work in a project and the role of collective 

memory. 

Button and Sharrock [22] carried out an ethnographically- 

informed study on global software development to explain the 

knowledge that is displayed in the collaborative actions and inter- 

actions of design and development. Sharp and Robinson [23] re- 

ported on a study of eXtreme Programming carried out in a 

small company developing web-based intelligent advertisements. 

The main result being that the XP developers were clearly “agile.”

This agility seemed intimately related to the relaxed, competent 

atmosphere that pervaded the developers working in groups. 

Singer et al. [24] found that software engineers maintain a large 

telecommunications system through habits and tool usage during 

software development. This study was hosted in a single company. 

Despite the software engineers stating that “reading documenta- 

tion” was what they did, the study found that searching and look- 

ing at source code was much more common than looking at doc- 

umentation. This case shows there is a difference between what 

practitioners say they do and what they actually do. Ethnographic 

research might help in highlighting and explaining such discrepan- 

cies to make clearer un-remarked aspects of practice [12] . 

Further, Salviulo and Scanniello [25] conducted an ethnograph- 

ically informed study with students and professionals to under- 

stand the role of comments and identifiers in source code com- 

prehensibility and maintainability. Authors observed the following 

outcomes: (i) professional developers (as compared with students) 

prefer to deal with source code and identifiers rather than com- 

ments, (ii) all participants (professionals and students) believed 

that the use of naming convention techniques when writing iden- 

tifiers was essential, and (iii) all participants stated that the names 

of identifiers are important and developers should properly choose 

them. 

2.2. Studies on TDD 

Although ethnography has been used to study how testing is 

done within software companies (e.g., [26,27] ), there is a lack of 

Please cite this article as: S. Romano et al., Findings from a multi-method study on test-driven development, Information and Software 

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.03.010 

http://dx.doi.org/10.1016/j.infsof.2017.03.010


Download English Version:

https://daneshyari.com/en/article/4972270

Download Persian Version:

https://daneshyari.com/article/4972270

Daneshyari.com

https://daneshyari.com/en/article/4972270
https://daneshyari.com/article/4972270
https://daneshyari.com

