
Information and Software Technology 82 (2017) 1–18 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Twenty years of object-relational mapping: A survey on patterns, 

solutions, and their implications on application design 

Alexandre Torres a , ∗, Renata Galante 

a , Marcelo S. Pimenta 

a , Alexandre Jonatan B. Martins b 

a Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil 
b TAGMATEC, Rodovia SC-401, 600, ParqTEC Alfa, CE Alfama, sala 405, Florianópolis, SC 88030-911, Brazil 

a r t i c l e i n f o 

Article history: 

Received 30 December 2015 

Revised 23 September 2016 

Accepted 27 September 2016 

Available online 28 September 2016 

Keywords: 

Object-relational mapping 

Design patterns 

Impedance mismatch problem 

Enterprise patterns 

Class models 

a b s t r a c t 

Context: Almost twenty years after the first release of TopLink for Java, Object-Relational Mapping Solu- 

tions (ORMSs) are available at every popular development platform, providing useful tools for develop- 

ers to deal with the impedance mismatch problem. However, no matter how ubiquitous these solutions 

are, this essential problem remains as challenging as ever. Different solutions, each with a particular 

vocabulary, are difficult to learn, and make the impedance problem looks deceptively simpler than it 

really is. 

Objective: The objective of this paper is to identify, discuss, and organize the knowledge concerning 

ORMSs, helping designers towards making better informed decisions about designing and implementing 

their models, focusing at the static view of persistence mapping. 

Method: This paper presents a survey with nine ORMSs, selected from the top ten development platforms 

in popularity. Each ORMS was assessed, by documentation review and experience, in relation to architec- 

tural and structural patterns, selected from literature, and its characteristics and implementation options, 

including platform specific particularities. 

Results: We found out that all studied ORMSs followed architectural and structural patterns in the liter- 

ature, but often with distinct nomenclature, and some singularities. Many decisions, depending on how 

patterns are implemented and configured, affect how class models should be adapted, in order to create 

practical mappings to the database. 

Conclusion: This survey identified what structural patterns each ORMS followed, highlighting major struc- 

tural decisions a designer must take, and its consequences, in order to turn analysis models into object 

oriented systems. It also offers a pattern based set of characteristics that developers can use as a baseline 

to make their own assessments of ORMSs. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Relational Databases (RDBs) and Object-Oriented Programming 

Languages (OOPLs) are based upon distinct paradigms, containing 

technical, conceptual, and cultural incompatibilities. The obstacles 

of dealing with such incompatibilities are commonly referred to as 

the object-relational Impedance Mismatch Problem (IMP) [1–3] . 

If system analysis aims at the recognition of the business prob- 

lems, sketching platform independent solutions, such as identifying 

and applying analysis patterns [4] , the design activity is focused in 

fitting the analysis to the limitations of the chosen platform. At the 

∗ Corresponding author. 

E-mail address: atorres@inf.ufrgs.br (A. Torres). 

design, the IMP can turn analysis models into something difficult 

to understand, maintain, evolve, and even track back to the original 

idea. 

For example, two basic concepts on OO models are inheritance 

and many-to-many relationships, both extensively used on analysis 

models, such as analysis patterns [4] , and both are absent on RDBs. 

Primary and foreign keys are important concepts for good database 

design, and both are absent on OOPLs. Bridging these conceptual 

mismatches, without losing the tracking among all artifacts, is the 

challenge of the IMP. 

In many projects it is possible to avoid the IMP, by not ad- 

hering to Object-Oriented (OO) practices, or not using a RDB. 

Sometimes it is feasible to place all domain logic within stored 

procedures. Another way is using NoSQL persistence, such as 

Document-Oriented Databases, and deal with other kind of mis- 

http://dx.doi.org/10.1016/j.infsof.2016.09.009 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.09.009&domain=pdf
mailto:atorres@inf.ufrgs.br
http://dx.doi.org/10.1016/j.infsof.2016.09.009


2 A. Torres et al. / Information and Software Technology 82 (2017) 1–18 

matches related to Object-Document Mapping [5] . Nevertheless, 

relational databases (RDBs) continue to be the backbone of infor- 

mation systems, and nobody knows if this will ever change [6] . 

From the developer standpoint, Object-Relational Mapping 

(ORM) encompasses solutions for mapping business objects to 

relational data, by separating persistence concerns on a persistence 

layer [7] . Contrary to popular belief, ORM is not trivial nor fully 

automatic: mappings are a kind of updatable view , and its automa- 

tion is undecidable [8] . Moreover, ORM relies on experienced de- 

velopers being able to trade-off between database design concerns, 

such as data normalization, primary keys, and relationships, and 

the forces of OO design, such as pursuing high cohesion and low 

coupling [3 , 9] . 

Design patterns are a great way to organize knowledge and 

teach good practices, and this also applies to ORM patterns [7 , 10–

12 ]. For quite some time, Object-Relational Mapping Solutions 

(ORMSs) were expensive and limited, and these patterns were 

an important reference when developing the ORM from scratch. 

Nowadays ORMSs are ubiquitous: every OO platform has at least 

one ORMS, sometimes with an “official” API. This popularization 

made ORM looks simpler than it really is [13] . 

Each ORMS has a different terminology, with different names to 

concepts that have similar, or even the same, meaning. For exam- 

ple, embedded values are also referred as complex types, composite 

columns, and aggregated values, all of them representing the same 

basic pattern. ORMSs named after patterns, such as Data Mapper 

and Active Record , in reality aggregates a combination of different 

pattern implementations, what may confuse developers about their 

propose and scope. Moreover, each OOPL has particularities that 

must be taken into account when dealing with ORM, such as if it 

has static or dynamic types, or if it supports multiple inheritance. 

This all contributes to categorizing IMP as the Vietnam of computer 

science [14] . 

This paper pursues answers to developers and designers about 

what compromises must be taken when dealing with the IMP, and 

how to assess the strengths and weakness of ORMSs. It presents 

a critical survey in the scenario of ORMSs, relating its characteris- 

tics with the established design/architectural patterns in the liter- 

ature. In order to be relevant to the widest public, within a lim- 

ited survey, the ORMSs were selected to represent the most popu- 

lar OOPLs. 

The scope of this study covers the characteristics of ORMSs 

related to the static view of modeling [15] , including all data 

structure concerns, as well as the organization of operations on 

the data, describing behavioral entities as discrete modeling ele- 

ments. This includes the presence of Create, Read, Update and Delete 

(CRUD) basic persistence operations, but not the design of their 

behavior; includes the way a relationship can be fetched and the 

impact of each decision, but not the way queries are designed to 

fetch related data. The design of queries in ORMSs, using SQL, or 

other proprietary object query languages, is out of the proposed 

scope. Internal implementation mechanisms of ORMSs were left 

out, such as Unit of Work and Repository patterns, because they 

are difficult to assess, and should not interfere with structural 

design. 

The contribution of this paper is to provide a common termi- 

nology for the assessment of ORMSs, and a better understanding 

on ORM patterns and how they are applied across distinct plat- 

forms and frameworks. It summarizes a list of important decisions 

that a developer will have to make when using ORMSs. This in- 

formation helps the designer in the anticipation of project limita- 

tions, the documentation of design decisions due to ORMS charac- 

teristics, and a better traceability between implementation artifacts 

and conceptual elements. This paper is not intended to point out 

what is the best of the ORMSs, but rather to help understand how 

to compare them. 

The remaining of this paper is organized as follows: in 

Section 2 we discuss the related work that drives our study, with 

a brief historical introduction of the impedance mismatch prob- 

lem; in Section 3 we present the methodology used in the survey; 

in Section 4 we present the survey of ORMSs relating patterns, 

implementations, and implications for the application design; in 

Section 5 we present conclusions and future work. 

2. Historical background and related work 

Initial research on the object-relational IMP may be traced 

back to the practical need of storing Smalltalk objects in persis- 

tent databases [1] . At that time, most studies were focused on the 

upcoming new generation of OO database systems, discussing is- 

sues later employed for ORM such as inheritance, associations, and 

polymorphism [16 , 17] . 

Patterns are recurring solutions identified by experience and 

documented as practical guides to software design [18] . In the 90s, 

due to the long takeoff of OO databases, impedance mismatch re- 

search shifted to ORM. The early impedance solutions were orga- 

nized as an easy to access “buffet” of design patterns for system 

designers and developers. Patterns for each persistence layer com- 

ponent, and approach, covered several strategies to overcome the 

IMP [7 , 10 , 19] . 

TopLink released the first known commercial ORMS for Smalltalk 

in 1994, and two years later for Java [20] . The central patterns of 

interest in this paper (ORM patterns) are those focused on the 

mapping of objects to tables, since they establish the common 

ways of designing classes that represent database objects and vice 

versa [12] . 

In the twenty-first century the OO databases adoption was near 

stagnant [21] . The set of persistence patterns became part of a 

so called enterprise pattern set [11] , as the impedance mismatch 

problem was recognized as much more than a technical concern, 

encompassing conceptual and cultural problems [3] . 

The dominance of OO languages and the inexpensive/free 

ORMSs disseminated the use of persistence layers and a Domain 

Model approach, where domain classes centralized behavior and 

data. Successful ORMSs such as TopLink (now EclipseLink ) and Hi- 

bernate contributed to, and received contribution from, standards 

such as JDO and JPA , both influenced by the object data standard 

[22] . Failure in adopting ORMSs is often related to SQL and perfor- 

mance anti-patterns [23 , 24] . 

The impedance mismatch problem attracted some attention be- 

yond the pattern scope in recent publications. Model management 

fits the IMP as one type of engineered mapping problem, solved 

by schema evolution operations [25] . Mappings are also subject of 

study for the general impedance mismatch case [26] . Both works 

deal with impedance mismatch beyond the OO domain, including 

XML, Cobol and Data warehousing mismatch problems. 

Another classification for data mappings was proposed in a gen- 

eral top-down way: a conceptual framework based on concerns 

such as paradigm, language, schema and instance; each concern 

influencing the subsequent choices [27] . Our classification has a 

bottom-up approach, and deals with a smaller set of representa- 

tive frameworks, focusing more on language, schema and instance 

options for ORMSs. 

3. Methodology 

This survey is based on bibliographic research, aiming at the 

relationships between the ORMS information and the pattern lit- 

erature. The sources of ORMSs information are obtained at the 

descriptions, online manuals, published papers (when they exist), 

books, and practical experience found on the internet validated by 

the personal experiences of the authors. The ORM patterns were 



Download English Version:

https://daneshyari.com/en/article/4972278

Download Persian Version:

https://daneshyari.com/article/4972278

Daneshyari.com

https://daneshyari.com/en/article/4972278
https://daneshyari.com/article/4972278
https://daneshyari.com

