
Information and Software Technology 82 (2017) 80–95

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

MUSEUM: Debugging real-world multilingual programs using

mutation analysis

Shin Hong

a , Taehoon Kwak

b , Byeongcheol Lee

c , ∗, Yiru Jeon

b , Bongseok Ko

c , Yunho Kim

b ,
Moonzoo Kim

b

a Handong Global University, 558 Handong-ro, Buk-gu, Pohang, Gyeongbuk, 37554, South Korea
b Korea Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
c Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea

a r t i c l e i n f o

Article history:

Received 29 July 2016

Revised 12 October 2016

Accepted 13 October 2016

Available online 14 October 2016

Keywords:

Debugging

mutation analysis

Language interoperability

Foreign function interface

a b s t r a c t

Context: The programming language ecosystem has diversified over the last few decades. Non-trivial pro-

grams are likely to be written in more than a single language to take advantage of various control/data

abstractions and legacy libraries.

Objective: Debugging multilingual bugs is challenging because language interfaces are difficult to use

correctly and the scope of fault localization goes beyond language boundaries. To locate the causes of

real-world multilingual bugs, this article proposes a mutation-based fault localization technique (MU-

SEUM).

Method: MUSEUM modifies a buggy program systematically with our new mutation operators as well

as conventional mutation operators, observes the dynamic behavioral changes in a test suite, and reports

suspicious statements. To reduce the analysis cost, MUSEUM selects a subset of mutated programs and

test cases.

Results: Our empirical evaluation shows that MUSEUM is (i) effective: it identifies the buggy statements

as the most suspicious statements for both resolved and unresolved non-trivial bugs in real-world mul-

tilingual programming projects; and (ii) efficient: it locates the buggy statements in modest amount of

time using multiple machines in parallel. Also, by applying selective mutation analysis (i.e., selecting sub-

sets of mutants and test cases to use), MUSEUM achieves significant speedup with marginal accuracy loss

compared to the full mutation analysis.

Conclusion: It is concluded that MUSEUM locates real-world multilingual bugs accurately. This result

shows that mutation analysis can provide an effective, efficient, and language semantics agnostic analysis

on multilingual code. Our light-weight analysis approach would play important roles as programmers

write and debug large and complex programs in diverse programming languages.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Modern software systems are written in multiple programming

languages to reuse legacy code and leverage the languages best

suited to the developers’ needs such as performance and produc-

tivity. A few languages cover the most use in part due to open

source libraries and legacy code while many languages exist for

∗ Corresponding author.

E-mail addresses: hongshin@handong.edu (S. Hong), thkwak@kaist.ac.kr (T.

Kwak), byeong@gist.ac.kr (B. Lee), podray@kaist.ac.kr (Y. Jeon), bsk@gist.ac.kr (B.

Ko), kimyunho@kaist.ac.kr (Y. Kim), moonzoo@cs.kaist.ac.kr (M. Kim).

niche uses [30] . This ecosystem encourages developers to write

a multilingual program which is a non-trivial program written in

multiple languages. Correct multilingual programs are difficult to

write due to the complex language interfaces such as Java Native

Interface (JNI) and Python/C that require the programs to respect

a set of thousands of interface safety rules over hundreds of ap-

plication interface functions [22,26] . Moreover, if a bug exists at

interactions of code written in different languages, programmers

have to understand the cause-effect chains across language bound-

aries [21] .

Despite the advance of automated testing techniques for com-

plex real-world programs, debugging multilingual bugs (e.g., a bug

http://dx.doi.org/10.1016/j.infsof.2016.10.002

0950-5849/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.infsof.2016.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.10.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hongshin@handong.edu
mailto:thkwak@kaist.ac.kr
mailto:byeong@gist.ac.kr
mailto:podray@kaist.ac.kr
mailto:bsk@gist.ac.kr
mailto:kimyunho@kaist.ac.kr
mailto:moonzoo@cs.kaist.ac.kr
http://dx.doi.org/10.1016/j.infsof.2016.10.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Hong et al. / Information and Software Technology 82 (2017) 80–95 81

whose cause-effect execution chain crosses language boundaries)

in real-world programs is still challenging and consumes signifi-

cant human effort. For instance, Bug 322222 in the Eclipse bug

repository crashes JVMs with a segmentation fault in C as an effect

when the program throws an exception in Java as the cause [21] .

Locating and fixing this bug took a heroic debugging effort for

more than a year from 2009 to 2010 with hundreds of comments

from dozens of programmers before the patch went into Eclipse

3.6.1 in September 2010. The existing bug detectors targeting mul-

tilingual bugs [20,22,24,25,40,41,44] are not effective in debugging

this case, because they can only report violations of predefined in-

terface safety rules, but cannot indicate the location of the bug, es-

pecially when the bug does not involve any known safety rule vi-

olations explicitly. Moreover, these bug detectors do not scale well

to a large number of languages and various kinds of program bugs

since they have to deeply analyze the semantics of each language

for each kind of bug.

This article proposes MUSEUM, a mutation-based fault localiza-

tion technique which locates the cause of a multilingual bug by ob-

serving how mutating a multilingual code feature changes the tar-

get program behaviors. Mutation-based fault localization (MBFL) is

an approach recently proposed for locating code lines that cause a

test failure accurately. An MBFL technique takes target source code

and a test suite including failing test cases as input, and assesses

suspiciousness of each statement in terms of its relevance to the

error through mutation analysis of target code. In more detail, an

MBFL technique calculates suspiciousness scores of statements by

observing how testing results (i.e., pass/fail) change if the state-

ment is modified/mutated. MUSEUM extends an MBFL technique

MUSE [31] which is limited for targeting monolingual bugs (i.e.,

bugs in C). MUSEUM applies new mutation operators that system-

atically modify the multilingual features/behaviors of a target pro-

gram (see Section 3.3).

Our empirical evaluation on the eight real-world Java/C bugs

(Sections 4 – 7) demonstrates that MUSEUM locates the bugs in

non-trivial real-world multilingual programs far more accurately

than the state-of-the-art spectrum based fault localization tech-

niques. MUSEUM identifies the buggy statements as the most sus-

picious statements for all eight bugs (Section 4). For example, for

Bug 322222 in the Eclipse bug repository, MUSEUM indicates the

statement at which the developer made a fix as the most suspi-

cious statement among total 3494 candidates (Table 2). Further-

more, one case study on an unresolved Eclipse bug (i.e., an open

bug whose fix is not yet made) clearly demonstrates that MUSEUM

generates effective information for developers to identify and fix

the bug (Section 7).

In summary, this article’s contributions are:

1. An automated fault localization technique (i.e., MUSEUM) which

is effective to detect multilingual bugs which are known as no-

toriously difficult to debug.

2. New mutation operators on multilingual behavior which are

highly effective to locate multilingual bugs (Section 3.3)

3. Detailed report of the three case studies to figure out why and

how the proposed technique can localize real-world multilin-

gual bugs accurately (Sections 5 –7).

This article extends our prior conference publication [15] in

three ways: (i) Section 3.3 elaborates the program mutation with

the four additional mutation operators to increase the accuracy

of localizing multilingual bugs (ii) Sections 5 and 6 describe the

case studies on two additional resolved bugs (Bug5 and Bug7). 1

Also, Section 7 illustrates a case study on one unresolved open bug

1 The full description of all eight case studies is available at http://swtv.kaist.ac.

kr/publications/museum-techreport.pdf .

(Bug8) to demonstrate how MUSEUM can guide developers to de-

bug a complex multilingual bug (iii) Section 8 shows that MUSEUM

can significantly speedup the fault localization with marginal accu-

racy loss by selecting subsets of mutants and test cases to use.

2. Background and related work

2.1. Multilingual bugs

A multilingual program is composed of several pieces of code

in different languages that execute each others through language

interfaces (e.g., JNI [26] and Python/C). These multilingual pro-

grams introduce new classes of programming bugs which obso-

lete the existing monolingual debugging tools and require much

more debugging efforts of programmers than monolingual pro-

grams [21,43] . We classify multilingual bugs into language interface

bugs and cross-language bugs .

2.1.1. Language interface bugs

Language interfaces require multilingual programs to follow

safety rules across language boundaries. Lee et al. [22] classify

safety rules in Java/C programs into the following three classes:

• State constraints ensure that the runtime system of one lan-

guage is in a consistent state before transiting to/from a system

of another language. For instance, JNI requires that the program

is not propagating a Java exception before executing a JNI func-

tion from a native method in C.

• Type constraints ensure that the programs in different languages

exchange valid arguments and return values of expected types

at a language boundary. For instance, the NewStringUTF
function in JNI expects its arguments not to be NULL in C.

• Resource constraints ensure that the program manages resources

correctly. For example, a local reference l to a Java object ob-

tained in a native method m 1 should not be reused in an-

other native method m 2 since l becomes invalid when m 1 ter-

minates [26] .

For instance, the manuals for JNI [26] and Python/C describe thou-

sands of safety rules over hundreds of API functions. When a pro-

gram breaks an interface safety rule, the program crashes or gen-

erates undefined behaviors [22] .

2.1.2. Cross-language bugs

Cross-language bugs have a cause-effect chain that goes

through language interfaces while respecting all interface safety

rules. For instance, a program would leak a C object referenced

by a Java object that is garbage collected at some point without

violating any safety rules of language interfaces. In this case, the

cause of the memory leak is in Java at the last reference to this

Java object while the effect is in C (see Section 3.1).

2.2. Mutation-based fault localization (MBFL)

Fault localization techniques [45] aim to locate the buggy state-

ment that causes an error in the target program by observing test

runs. Fault localization has been extensively studied for monolin-

gual programs both empirically [18,31,39] and theoretically [46] .

Spectrum-based fault localization (SBFL) techniques infer that a

code entity is suspicious for an error if the code entity is likely

executed when the error occurs. Note that SBFL techniques are

language semantics agnostic because they calculate the suspicious-

ness scores of target code entities by using the testing results (i.e.,

fail/pass) of test cases and the code coverage of these test cases

without complex semantic analyses. However, the accuracy of SBFL

techniques are often too low for large real-world programs.

http://swtv.kaist.ac.kr/publications/museum-techreport.pdf

Download English Version:

https://daneshyari.com/en/article/4972281

Download Persian Version:

https://daneshyari.com/article/4972281

Daneshyari.com

https://daneshyari.com/en/article/4972281
https://daneshyari.com/article/4972281
https://daneshyari.com

