
Information and Software Technology 82 (2017) 177–192 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Improved bug localization based on code change histories and bug 

reports 

� 

Klaus Changsun Youm 

a , b , ∗, June Ahn 

a , Eunseok Lee 

a , ∗

a Department of Information and Communication Engineering, Sungkyunkwan University, Suwon, Republic of Korea 
b Mobile Communication and Business, Samsung Electronics, Suwon, Republic of Korea 

a r t i c l e i n f o 

Article history: 

Received 13 March 2016 

Revised 1 November 2016 

Accepted 1 November 2016 

Available online 9 November 2016 

Keywords: 

Bug localization 

Information retrieval 

Bug reports 

Stack traces 

Code change history 

Method analysis 

a b s t r a c t 

Context: Several issues or defects in released software during the maintenance phase are reported to the 

development team. It is costly and time-consuming for developers to precisely localize bugs. Bug reports 

and the code change history are frequently used and provide information for identifying fault locations 

during the software maintenance phase. 

Objective: It is difficult to standardize the style of bug reports written in natural languages to improve the 

accuracy of bug localization. The objective of this paper is to propose an effective information retrieval- 

based bug localization method to find suspicious files and methods for resolving bugs. 

Method: In this paper, we propose a novel information retrieval-based bug localization approach, termed 

Bug Localization using Integrated Analysis (BLIA). Our proposed BLIA integrates analyzed data by utilizing 

texts, stack traces and comments in bug reports, structured information of source files, and the source 

code change history. We improved the granularity of bug localization from the file level to the method 

level by extending previous bug repository data. 

Results: We evaluated the effectiveness of our approach based on experiments using three open-source 

projects, namely AspectJ, SWT, and ZXing. In terms of the mean average precision, on average our ap- 

proach improves the metric of BugLocator, BLUiR, BRTracer, AmaLgam and the preliminary version of 

BLIA by 54%, 42%, 30%, 25% and 15%, respectively, at the file level of bug localization. 

Conclusion: Compared with prior tools, the results showed that BLIA outperforms these other methods. 

We analyzed the influence of each score of BLIA from various combinations based on the analyzed infor- 

mation. Our proposed enhancement significantly improved the accuracy. To improve the granularity level 

of bug localization, a new approach at the method level is proposed and its potential is evaluated. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Software maintenance costs after the release of a product are 

greater than the cost of the design and implementation phases 

[2–4] . Issues or defects in the released software are updated and 

managed during the development phase using the bug or issue 

management system. Developers who are assigned to resolve the 

report initiate activities to fix the problem. They attempt to repro- 

duce the same result in the bug report and then find the locations 

of the defects. However, it is costly and time-consuming to pre- 

cisely localize bugs, and bug localization is a tedious process for 

developers. In cases of large software products, it is difficult for 

� A preliminary version of this paper was presented and best paper awarded at 

the 22th Asia-Pacific Software Engineering Conference (APSEC 2015) [1] . 
∗ Corresponding authors. 

E-mail addresses: klausyoum@skku.edu , klaus.youm@samsung.com (K.C. Youm), 

ahnjune@skku.edu (J. Ahn), leees@skku.edu (E. Lee). 

hundreds of developers to resolve the large number of bug reports. 

Therefore, effective methods for locating bugs automatically from 

bug reports are desirable in order to reduce the resolution time 

and software maintenance costs. 

To this end, various studies regarding Change Impact Analy- 

sis (CIA), based on differences in the analysis of source file ver- 

sions, were proposed during the 20 0 0s [5–12] . In the 2010s, nu- 

merous Spectrum-Based Fault Localization (SBFL) techniques have 

been suggested and evaluated [12–16] . Recently, researchers have 

applied various Information Retrieval (IR) techniques [17] , which 

are mainly used to search the text domain for software mainte- 

nance for the purposes of feature location, developer identifica- 

tion and impact analysis [18] . IR-based bug localization techniques 

have attracted significant attention due to their relatively low com- 

putational cost and improved accuracy compared to change im- 

pact analysis or spectrum-based fault localization. In these IR ap- 

proaches, the main idea is that a bug report is treated as a query 

and that the source files in the software product to be searched 

http://dx.doi.org/10.1016/j.infsof.2016.11.002 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.11.002&domain=pdf
mailto:klausyoum@skku.edu
mailto:klaus.youm@samsung.com
mailto:ahnjune@skku.edu
mailto:leees@skku.edu
http://dx.doi.org/10.1016/j.infsof.2016.11.002


178 K.C. Youm et al. / Information and Software Technology 82 (2017) 177–192 

comprise the document collection. To improve the accuracy of lo- 

cating bugs, the following are all used in various combinations: 

similarity analysis of previously fixed bugs [19] , the use of struc- 

tured information of the source files instead of treating them as 

simple documents [20] , version change history analysis [21] and 

stack trace analysis [22–24] . 

We analyzed the bug/issue management process to identify 

the pieces of information useful to developers for localizing bugs. 

With these considerations in mind, we propose a static and in- 

tegrated analysis approach for bug localization by utilizing texts, 

stack traces and comments in bug reports, structured information 

of the source files, and the source code change history. First, we 

analyze the similarity between texts in a bug report and the source 

files using an IR method. We adopt the revised Vector Space Model 

(rVSM) of Zhou et al. [19] , then integrate the structured informa- 

tion analysis of source files, the effectiveness of which was demon- 

strated by Saha et al. [20] . Second, the similarities of previously 

fixed bug reports are analyzed using a basic IR method [19] . Third, 

if a bug report includes stack traces, stack traces are also analyzed 

to identify suspicious files therein [23] . Fourth, an analysis of the 

historical information from the source code changes is performed 

to identify suspicious files and methods for predicting bugs [21] . 

Fifth, we integrate the above four types of information to local- 

ize suspicious files in each bug report; this represents an output 

of bug localization at the file level. Sixth, from the ranked suspi- 

cious files, we analyze the similarity between methods in the files 

and bug reports. Finally, suspicious methods are ranked and listed 

based on a combination of the scores of the fourth and sixth steps. 

This also represents an output of bug localization at the method 

level. 

The contributions of our research are as follows: 

1. We propose a novel IR-based bug localization approach termed 

B ug L ocalization using I ntegrated A nalysis (BLIA). We utilize the 

content, stack traces and comments in bug reports, structured 

information of the source files, and the source code change his- 

tory. We design a combined method to integrate all analyzed 

data in order to localize bugs at not only the file level, but also 

the method level. BLIA v1.0, which is a preliminary version, is 

focused on bug localization at the file level. The current version, 

BLIA v1.5, extends its implementation to both the method level 

and the analysis of the comments in bug reports. 

2. We find the optimized range of parameters that control the in- 

fluence rate of each piece of information analyzed. 

3. Bug repositories for our experiments were extended. The com- 

ments, fixed methods and fixed commits for each bug report 

were inserted. The data are available to improve the accuracy 

of bug localization research. 

The remainder of this paper is organized as follows. 

Section 2 describes the background for this work. Section 3 de- 

scribes our proposed BLIA approach. In Section 4 , we present our 

experimental design and evaluation metrics. We discuss the exper- 

imental results and threats to validity in Section 5 and Section 6 , 

respectively. Section 7 surveys related work. Finally, our conclusion 

and directions for future work are presented in Section 8 . 

2. Background 

In this section, we first present a bug/issue management pro- 

cess to understand how bug reports are resolved. With an under- 

standing of this process, we can identify factors that are helpful 

in locating bugs. We describe an example of an actual bug report 

from an open-source project. We demonstrate the general process 

and techniques of IR-based bug localization. In the last subsection, 

we provide historical information from the software configuration 

repository. 

Fig. 1. Bug/issue management process. 

2.1. Bug/issue management process 

Fig. 1 illustrates a bug/issue management process used by de- 

velopers to resolve a bug report after its assignment. Users sub- 

mit a report to a bug/issue management system when they use a 

released software product and unexpected errors occur. Not only 

do industrial projects apply bug/issue management systems such 

as Bugzilla, Trac and JIRA, but open-source projects do as well. A 

bug report is assigned to developers who attempt to find the lo- 

cation of the bug. They usually try to reproduce the bug scenario 

in the bug report. The developers who find the location and root 

cause of a defect first fix the source files and then test the modi- 

fied software again. If the error scenario in the bug report does not 

recur, the status of the bug report is changed to “Resolved” by the 

assigned developers. After resolution of the bug report, if the de- 

velopment team has a separate testing team, a tester is notified of 

the updated status. The tester checks the scenario of the reported 

bug, and then verifies that the bug has been resolved. The status 

is changed to “Verified” if the testing is completed without errors. 

A verification notification of the bug report is then sent to the re- 

porter. 

2.2. Bug reports 

Bug reports are vital clues for developers for finding the loca- 

tion of defects. Developers guess which source files and lines are 

buggy after understanding the assigned bug report. Usually, they 

attempt to reproduce the scenario in the bug report, and then at- 

tempt to trace the root cause of the defects and find the location 

of the source files. 

Table 1 presents an existing bug report 1 from Eclipse Bugzilla 2 . 

A bug report comprises the bug ID, summary, description, reported 

date, fixed date, status and other related fields. Some bug reports 

include stack traces of when the exception occurred. This stack 

trace information is critical for localizing a bug [25] . For example, 

developers attempt to reproduce an issue scenario and assume that 

the location of a bug is based on class names or method names in 

the bug report. Comments included in the bug report provide fur- 

ther information on the error situation. 

Furthermore, developers search for similar bug reports in the 

bug repository. If similar bug reports are found, the fixed files used 

1 https://goo.gl/POC65q . 
2 https://bugs.eclipse.org/bugs/ . 

https://goo.gl/POC65q
https://bugs.eclipse.org/bugs/


Download English Version:

https://daneshyari.com/en/article/4972285

Download Persian Version:

https://daneshyari.com/article/4972285

Daneshyari.com

https://daneshyari.com/en/article/4972285
https://daneshyari.com/article/4972285
https://daneshyari.com

