
Information and Software Technology 88 (2017) 37–52 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Benefits and drawbacks of software reference architectures: A case 

study 

Silverio Martínez-Fernández 

a , b , ∗, Claudia P. Ayala 

b , Xavier Franch 

b , 
Helena Martins Marques c 

a Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany 
b Group of Software and Service Engineering (GESSI), Universitat Politècnica de Catalunya (UPC), BarcelonaTech, Jordi Girona, num.1-3, Omega building, 

Barcelona, Catalonia, Spain 
c everis, Diagonal 605, Barcelona, Spain 

a r t i c l e i n f o 

Article history: 

Received 16 December 2016 

Revised 9 March 2017 

Accepted 21 March 2017 

Available online 22 March 2017 

Keywords: 

Software architecture 

Reference architecture 

Empirical software engineering 

Case study 

Benefits 

Drawbacks 

a b s t r a c t 

Context: Software Reference Architectures (SRAs) play a fundamental role for organizations whose busi- 

ness greatly depends on the efficient development and maintenance of complex software applications. 

However, little is known about the real value and risks associated with SRAs in industrial practice. 

Objective: To investigate the current industrial practice of SRAs in a single company from the perspective 

of different stakeholders. 

Method: An exploratory case study that investigates the benefits and drawbacks perceived by relevant 

stakeholders in nine SRAs designed by a multinational software consulting company. 

Results: The study shows the perceptions of different stakeholders regarding the benefits and drawbacks 

of SRAs (e.g., both SRA designers and users agree that they benefit from reduced development costs; on 

the contrary, only application builders strongly highlighted the extra learning curve as a drawback associ- 

ated with mastering SRAs). Furthermore, some of the SRA benefits and drawbacks commonly highlighted 

in the literature were remarkably not mentioned as a benefit of SRAs (e.g., the use of best practices). Like- 

wise, other aspects arose that are not usually discussed in the literature, such as higher time-to-market 

for applications when their dependencies on the SRA are managed inappropriately. 

Conclusions: This study aims to help practitioners and researchers to better understand real SRAs projects 

and the contexts where these benefits and drawbacks appeared, as well as some SRA improvement strate- 

gies. This would contribute to strengthening the evidence regarding SRAs and support practitioners in 

making better informed decisions about the expected SRA benefits and drawbacks. Furthermore, we make 

available the instruments used in this study and the anonymized data gathered to motivate others to pro- 

vide similar evidence to help mature SRA research and practice. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Today organizations are faced with the development and main- 

tenance of many complex and business-critical software applica- 

tions. These software applications are developed at multiple loca- 

tions, by multiple vendors, and across multiple organizations [1] . 

Despite this diversity, software applications belonging to the same 

technology or business domain usually share similar architectural 

needs. As a response to this situation and in order to speed up 

software development (with the aim of providing guidelines and 

inspiration for the design of systems) or achieve standardization 

∗ Corresponding author at: Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiser- 

slautern, Germany. 

E-mail address: Silverio.Martinez@iese.fraunhofer.de (S. Martínez-Fernández). 

(aimed at system/component interoperability), organizations often 

build a central asset called Software Reference Architecture (SRA). 

An SRA is “a generic architecture for a class of systems that is 

used as a foundation for the design of concrete architectures from 

this class” [2] . SRAs provide supporting artifacts (e.g., software ele- 

ments, guidelines, and documentation) to enable their use, possibly 

instantiated partially or completely [3] . Therefore, software engi- 

neers use SRAs as templates when designing software applications 

in a particular domain. For example, there are SRAs defined by in- 

dustry research centers to inspire architecture design and selection 

of technologies when constructing big data systems [4] ; SRAs de- 

fined by software and industry leaders to standardize domains like 

the Internet of Things [5] ; and SRAs defined in-house such as the 

ones of this study. 

http://dx.doi.org/10.1016/j.infsof.2017.03.011 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2017.03.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.03.011&domain=pdf
mailto:Silverio.Martinez@iese.fraunhofer.de
http://dx.doi.org/10.1016/j.infsof.2017.03.011


38 S. Martínez-Fernández et al. / Information and Software Technology 88 (2017) 37–52 

Several potential benefits of using reference architectures have 

been claimed. A Gartner’s report summarizes them as follows: 

“Reference architectures reduce the complexity of hardware and 

software architecture by systematically reducing environmental di- 

versity […], enables greatly increased speed and reduced opera- 

tional expenses as well as quality improvements due to lowered 

complexity, greater investment and greater reuse” [6] . Thus, “IT or- 

ganizations that lack architecture and configuration standards […] 

have higher costs and less agility than those with enforced stan- 

dards” [6] . In addition, some benefits and drawbacks of SRAs have 

been reported in the literature. However, most of them are not 

supported by industrial evidence [7] . Therefore, the perspective of 

academics regarding SRAs and their benefits and drawbacks is not 

always in line with industry practice, making industrial uptake of 

SRAs difficult [7] . In order to envisage realistic and effective solu- 

tions, more evidence-based research is needed to understand ac- 

tual industrial SRA practices, their real value, and their risks [8] . 

Therefore, considering this scenario, our research goal is: to 

gather evidence regarding the benefits and drawbacks of SRAs in a 

company from the perspective of different stakeholders involved in 

their design and usage . 

With this goal in mind, we conducted a case study at ev- 

eris , a multinational software consulting company with more than 

10,0 0 0 employees in 12 countries, which became part of NTT Data 

in 2014. 1 everis offers support to their client organizations (large 

organizations from diverse business domains) to design and use 

SRAs. Such SRAs foster the development of high-quality software 

architectures for new software applications. Thus, the everis con- 

text offered us an adequate setting for investigating our research 

question. 

The case study was conducted in two stages. First, the data re- 

lated to SRA engineering at everis was collected and analyzed [9] . 

Second, this case study was designed to understand the benefits 

and drawbacks of nine SRA projects run at client organizations of 

everis . In this paper, we report the results from the second stage. 

This case study shows the main benefits and drawbacks of SRAs 

in the context of client organizations of everis . Moreover, the study 

provides evidence of some improvement strategies suggested by 

the respondents for dealing with some SRA drawbacks. In sum- 

mary, these results aim to help practitioners and researchers to 

better understand real SRA projects and their associated benefits 

and drawbacks in their corresponding contexts. It aims at provid- 

ing insights on the relationship between some benefits/drawbacks 

and their contextual factors. Of course, more research is needed to 

understand these relationships. However, the study presented here 

could serve as a basis for generating hypotheses to be tested and 

for interpreting the results of such tests. 

The work presented in this paper is a follow-up of the poster 

presented at [10] . It extends and improves the results presented 

there by reporting definitive and complete results, analyzing dif- 

ferent stakeholders’ visions regarding the benefits and drawbacks 

of SRAs and their importance, discussing key novel findings, and 

showing how to use this information to improve the current prac- 

tice in SRA use. 

The paper is structured as follows. Section 2 provides 

SRAs examples, their mostly theoretical benefits and draw- 

backs, and a comparison of SRAs with product line architec- 

tures. Section 3 shows the industrial context at everis and 

presents the objectives, methodology, and details of this case 

study. Section 4 presents the results obtained from the study. 

Section 5 provides an in-depth discussion of the findings by com- 

paring them with previous research. Section 6 discusses the threats 

1 everis ’ site: http://www.everis.com/ . NTT Data’s site: http://www.nttdata.com . 

to validity. Finally, Section 7 summarizes the conclusions and 

sketches future work. 

2. Software reference architectures 

The next three subsections present some examples of the ap- 

plication domains of SRAs, their mostly theoretical benefits and 

drawbacks, and the differences between SRAs and product line ar- 

chitectures (which are another asset for managing many software 

systems). 

2.1. Application domains of SRAs 

The software industry and academic communities have built 

many SRAs at various levels of abstraction. 

First, there are SRAs that target a technological domain (also 

called platform-specific SRAs [11] ). Examples are The Open Group 

standard for SOA reference architecture , which is a blueprint that 

provides guidelines for adopting a service-oriented approach to in- 

formation technology [12] ; the set of SRAs presented in the Mi- 

crosoft Application Architecture Guide, which are supported by the 

Microsoft technology stack [13] ; and the IBM big data reference ar- 

chitecture , which provides integrated capabilities for the adoption 

of information governance in the big data landscape [14] . There 

are also SRAs from academia for solving well-known technologi- 

cal problems (e.g., web browsers [15] , and software testing tools 

[16] ). 

Second, there are other types of SRAs that focus on a specific 

business domain (also called industry-specific SRAs). These SRAs 

can either target many organizations (whose applications share the 

business domain) or a specific single organization (which aims to 

standardize or facilitate the development and maintenance of its 

own applications). An example of an SRA that targets many organi- 

zations is AUTOSAR [17] , which is being used by many automotive 

manufacturers and suppliers in order to standardize the software 

in modern vehicles. An example of an SRA for a single organization 

is the SRA for NASA’s earth science data systems, which facilitates 

and homogenizes the development of this type of applications [18] . 

The above-mentioned second type of SRAs target a single do- 

main (i.e., the automotive or aerospace industry), which makes 

them hard to apply to other domains. In this direction, the goal of 

some European industrial research programs [19] is to enable their 

use across disparate domains. Also, the AUTOSAR consortium plans 

to adapt its SRA for other commercial sectors, such as railway, agri- 

culture, and forestry machinery [17] . This last type of SRAs cover- 

ing more than one industry is called industry-crosscutting SRAs. 

2.2. Benefits and drawbacks of SRAs 

There has not been much effort to review, appraise, and com- 

pare the benefits and drawbacks of SRAs based on industrial evi- 

dence (a notable exception being [7] ). Next, we summarize some 

of the benefits and drawbacks of SRAs asserted in the literature. 

We identified the following benefits: 

• (B1) Standardization of concrete software architectures by us- 

ing the SRA as a template for designing a portfolio of applica- 

tions fulfilling such a standardized design [2,7,8,11,20,21] . 

• (B2) Facilitation of the design of concrete software architec- 

tures by providing guidelines and inspiration to application 

builders [2,7,11,20–22] . 

• (B3) Systematic reuse of common functionalities and configu- 

rations throughout the generation of applications [1,7,11,20,22] . 

• (B4) Risk reduction through the use of proven and partly pre- 

qualified architectural elements included in the SRA [1,20] . 

• (B5) Enhanced quality by facilitating the achievement of soft- 

ware quality aspects already addressed by the SRA [21,22] . 

http://www.everis.com/
http://www.nttdata.com


Download English Version:

https://daneshyari.com/en/article/4972298

Download Persian Version:

https://daneshyari.com/article/4972298

Daneshyari.com

https://daneshyari.com/en/article/4972298
https://daneshyari.com/article/4972298
https://daneshyari.com

