
 

Accepted Manuscript

Static analysis of android apps: A systematic literature review

Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, Yves Le Traon

PII: S0950-5849(17)30298-7
DOI: 10.1016/j.infsof.2017.04.001
Reference: INFSOF 5823

To appear in: Information and Software Technology

Received date: 2 February 2016
Revised date: 6 March 2017
Accepted date: 4 April 2017

Please cite this article as: Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, Yves Le Traon, Static analysis of android
apps: A systematic literature review, Information and Software Technology (2017), doi:
10.1016/j.infsof.2017.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2017.04.001
http://dx.doi.org/10.1016/j.infsof.2017.04.001


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Static Analysis of Android Apps: A Systematic Literature Review

Li Lia,1, Tegawendé F. Bissyandéa, Mike Papadakisa, Siegfried Rasthoferb, Alexandre Bartela,2, Damien Octeauc, Jacques Kleina,
Yves Le Traona

aInterdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
bFraunhofer SIT, Darmstadt, Germany

cUniversity of Wisconsin and Pennsylvania State University

Abstract

Context: Static analysis exploits techniques that parse program source code or bytecode, often traversing program paths to
check some program properties. Static analysis approaches have been proposed for different tasks, including for assessing the
security of Android apps, detecting app clones, automating test cases generation, or for uncovering non-functional issues related to
performance or energy. The literature thus has proposed a large body of works, each of which attempts to tackle one or more of the
several challenges that program analysers face when dealing with Android apps.

Objective: We aim to provide a clear view of the state-of-the-art works that statically analyse Android apps, from which we
highlight the trends of static analysis approaches, pinpoint where the focus has been put, and enumerate the key aspects where
future researches are still needed.

Method: We have performed a systematic literature review (SLR) which involves studying 124 research papers published in
software engineering, programming languages and security venues in the last 5 years (January 2011 - December 2015). This review
is performed mainly in five dimensions: problems targeted by the approach, fundamental techniques used by authors, static analysis
sensitivities considered, android characteristics taken into account and the scale of evaluation performed.

Results: Our in-depth examination has led to several key findings: 1) Static analysis is largely performed to uncover security
and privacy issues; 2) The Soot framework and the Jimple intermediate representation are the most adopted basic support tool and
format, respectively; 3) Taint analysis remains the most applied technique in research approaches; 4) Most approaches support
several analysis sensitivities, but very few approaches consider path-sensitivity; 5) There is no single work that has been proposed
to tackle all challenges of static analysis that are related to Android programming; and 6) Only a small portion of state-of-the-art
works have made their artefacts publicly available.

Conclusion: The research community is still facing a number of challenges for building approaches that are aware altogether
of implicit-Flows, dynamic code loading features, reflective calls, native code and multi-threading, in order to implement sound
and highly precise static analyzers.

1. Introduction

Since its first commercial release in September 2008, the
Android mobile operating system has witnessed a steady adop-
tion by the manufacturing industry, mobile users, and the soft-
ware development community. Just a few years later, in 2015,
there were over one billion monthly active Android users, mean-
while its official market (Google Play) listed more than 1.5 mil-
lion apps. This adoption is further realised at the expense of
other mobile systems, since Android accounts for 83.1% of the
mobile device sales in the third quarter of 2014 [1], driving a
momentum which has created a shift in the development com-
munity to place Android as a “priority” target platform [2].

Because Android apps now pervade all user activities, ill-
designed and malicious apps have become big threats that can
lead to damages of varying severity (e.g., app crashes, financial

Email address: li.li@uni.lu (Li Li)
1Corresponding author.
2the author was employed at the Technical University of Darmstadt, Ger-

many, when he first worked on this paper

losses with malware sending premium-rate SMS, reputation is-
sues with private data leaks, etc). Data from anti-virus vendors
and security experts regularly report on the rise of malware in
the Android ecosystem. For example, G DATA has reported
that the 560,671 new Android malware samples collected in the
second quarter of 2015 revealed a 27% increase, compared to
the malware distributed in the first quarter of the same year [3].

To deal with the aforementioned threats, the research com-
munity has investigated various aspects of Android develop-
ment, and proposed a wide range of program analyses to iden-
tify syntactical errors and semantic bugs [4, 5], to discover sen-
sitive data leaks [6, 7], to uncover vulnerabilities [8, 9], etc. In
most cases, these analyses are performed statically, i.e., with-
out actually running the Android app code, in order not only to
ensure scalability when targeting thousands of apps in stores,
but also to guarantee a traversal of all possible execution paths.
Unfortunately, static analysis of Android programs is not a triv-
ial endeavour since one must account for several specific fea-
tures of Android, to ensure both soundness and completeness
of the analysis. Common barriers to the design and implemen-

Preprint submitted to Information and Software Technology April 4, 2017



Download English Version:

https://daneshyari.com/en/article/4972300

Download Persian Version:

https://daneshyari.com/article/4972300

Daneshyari.com

https://daneshyari.com/en/article/4972300
https://daneshyari.com/article/4972300
https://daneshyari.com

