
Information and Software Technology 80 (2016) 57–72

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The optimal testing order in the presence of switching cost

Huayao Wu

a , Changhai Nie

a , ∗, Fei-Ching Kuo

b

a State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
b Faculty of Information and Communication Technologies, Swinburne University of Technology, VIC, Australia

a r t i c l e i n f o

Article history:

Received 23 September 2015

Revised 12 July 2016

Accepted 18 August 2016

Available online 20 August 2016

Keywords:

Test suite prioritization

Combinatorial testing

Switching cost

Combination coverage

Multi-objective optimization

a b s t r a c t

Context: Test suite prioritization is a problem of deciding the order of executing test cases to reach the

desirable outcome. Many cost-cognisant prioritization approaches decide the order based on the cost of

test execution; but few based on the cost of switching test cases. The latter known as switching cost

is the effort of re-configuring the environment for running subsequent test cases. Our previous studies

show that switching cost can affect the efficiency of testing.

Objective: In this paper, we aim to identify the optimal testing order that can detect interaction triggered

faults earlier in the presence switching cost.

Method: We presented a distance based metric to measure the switching cost between test cases. As

reducing the switching cost can make the whole test suite run faster and thus achieve full combina-

tion coverage earlier, single-objective algorithms were used to minimize the total switching cost. Besides,

when determining the next test case to run, there is a trade-off between high combination coverage and

low switching cost. Hence, hybrid and multi-objective algorithms were used to achieve a better balance.

In order to evaluate different algorithms, we conducted a series of experiments covering 400 different

testing scenarios. We also conducted an empirical study with six real world applications.

Results: The heuristic solver for the travelling salesman problem is the best algorithm to minimize the

switching cost. It can detect faults earlier than the order with high rate of combination coverage. But in

order to further reduce the effort to detect the first fault, the hybrid and multi-objective algorithms are

the best methods.

Conclusion: Prioritization based on switching cost can speed up the fault detection to some extent, but

prioritization based on both combination coverage and testing cost can deliver the optimal testing order.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In software testing, time and resources are two key constraints

that drive testers’ decisions in testing practices. Test suite prior-

itization is about scheduling test cases to maximize test benefits

under these constraints. One example of benefits is the ability

of early fault detection [1] . Given a test suite to be executed, as

the various testing orders will make a difference on the effective-

ness of testing, many prioritization techniques have been widely

studied.

To do test suite prioritization, generally a surrogate metric

should be determined before the prioritization algorithms can

be applied. Currently, researchers have proposed many metrics

according to different testing goals, such as coverage based metrics

∗ Corresponding author. Fax: +862589680915.

E-mail address: changhainie@nju.edu.cn (C. Nie).

[2–7] , human based metrics [8,9] , and requirement based metrics

[10,11] . Testing cost is also an important metric in prioritization.

Elbaum et al. [12] have shown that the varying execution cost of

test cases will affect how quickly the fault can be detected. On

the other hand, Walcott et al. [13] have proposed a time-aware

prioritization method to detect as more faults as possible when

the allowable execution time is known in advance. However, as

the testing cost usually consists of the execution cost of each test

case and the switching cost between adjacent test cases, most of

current works all lack a consideration on the latter one.

The switching cost is crucial in practice if it cannot be ignored.

Supposing that the execution cost of each test case is fixed, re-

ordering them will not affect the total cost of execution. Whereas,

in different testing orders, the time and effort to change param-

eter settings when switching test cases will affect the efficacy of

testing. For example, Srikanth et al. [10] have reported the impact

of switching cost on a legacy product. In their study, the software

needs to be tested under different configurations, and it will

http://dx.doi.org/10.1016/j.infsof.2016.08.006

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.08.006&domain=pdf
mailto:changhainie@nju.edu.cn
http://dx.doi.org/10.1016/j.infsof.2016.08.006

58 H. Wu et al. / Information and Software Technology 80 (2016) 57–72

spend several days to change one configuration into another. In

addition, the switching cost may relate to the setting of software

compilation parameters [14] . Apparently, if this cost is high and

occurs frequently, a lot of time will be spent on switching test

cases instead of executing them. Furthermore, modern software

systems, especially highly configurable software systems, usually

consist of many features or components to be configured. When

there exists reasonable switching cost to change some features or

components, there is a need to make costly switches as infrequent

as possible to reduce the testing cost.

To measure the switching cost between test cases, in this

work we consider the context of combinatorial testing (CT). CT

is a well-known black box testing method to detect the faults

triggered by the interactions of parameters. The test suite of CT

is generated by some sophisticated algorithms to cover all the

required combinations with as small test suite as possible [15] ,

and the test suite of CT is often reordered by the combination

coverage [7,16–18] . When the switching cost is considered in CT,

Kimoto et al. [19] and Demiroz et al. [14] have proposed test suite

generation methods with two goals in mind: small size and low

switching cost. However, according to our previous findings [20] ,

their methods are not competitive in both criteria. And, generating

a small test suite is always a key challenge in CT. Only focusing on

prioritization can take the advantages of existing generation algo-

rithms. Besides, pure prioritization can also make use of existing

test suites, which may be designed to satisfy various needs. Hence,

instead of minimizing switching cost in test suite generation, we

focus on test suite prioritization for an existing test suite.

Our previous work [20] had proposed the problem of switching

cost based prioritization. The switching cost between test cases

was measured by a distance based metric, and we found that

minimizing switching cost can make the whole test suite run

faster and so achieve full combination coverage earlier. This obser-

vation motivated the single objective optimization, which aimed to

identify a testing order with as low switching cost as possible for a

given test suite. However, it was shown that the greedy algorithm

is fast but is easy to trap into local optimum, and the dynamic

programming can deliver the optimal order but it is only available

for very small test suites [20] . In order to explore more effective

algorithms for minimizing switching cost, in this work we further

applied the following two algorithms: Genetic Algorithm (GA) [21] ,

which is inspired by the successful applications of Search Based

Software Engineering (SBSE) [22] on prioritization [23] ; and Lin–

Kernighan heuristic (LKH) solver [24,25] for travelling salesman

problem (TSP) [26] , which can be used because the problem of

switching cost based prioritization can be reduced to TSP.

However, the single objective optimization is often limited

in practice, because software testing is often driven by multiple

imperatives [27–29] . In this work, when determining the next

case to run, we found that there exists a trade-off between high

combination coverage and low switching cost. And, the execu-

tion cost of each test case is also crucial in prioritization. So if

the aim is to cover more combinations with less time, it could

be insufficient to only consider one factor and multi-objective

optimization is thus more desirable. Therefore, we reformulated

the prioritization problem into a multi-objective version, and

applied Hybrid and NSGA-II [30] to balance the two goals: rate of

combination coverage and testing cost (execution cost + switching

cost). The Hybrid algorithm is based on greedy construction where

multiple objectives are combined into a single one, while NSGA-II

is a well known multi-objective evolutionary algorithm (MOEA) to

simultaneously optimize different objectives.

Moreover, as the effectiveness of prioritization is often depen-

dent on particular testing scenarios, we need to have a better

understanding of when and how we should reorder a test suite

in the presence of switching cost. To achieve this goal, we con-

ducted experiments to evaluate both single and multi objective

algorithms. The experimental subjects are 400 randomly sampled

testing scenarios with different distributions of testing cost, and

the different testing orders are compared in terms of optimization

quality and the ability of early fault detection. Besides, we also

conducted an empirical study to evaluate different prioritization

algorithms under five mobile applications and one desktop appli-

cation with realistic faults. As there has been little previous work

focusing on the relationships between combination coverage and

testing cost, the obtained results can bring new insights about the

practical choice of prioritization metrics.

In summary, the main contributions of this work are as follows:

1. Switching cost is an important factor in test suite prioritization.

To explore more effective algorithms to minimize switching

cost, we applied GA and LKH solver.

2. In order to further take combination coverage and execution

cost into consideration, we reformulated the prioritization

problem into a multi-objective version and applied Hybrid and

NSGA-II to achieve better balance.

3. We conducted experiments to evaluate different algorithms

in terms of both optimization quality and the ability of early

fault detection. The experimental results establish the following

findings:

(a) The LKH solver for TSP can yield the order with the lowest

switching cost. It can make faults be detected earlier than

the order with high rate of combination coverage.

(b) However, to further improve the ability of early fault de-

tection, considering both combination coverage and testing

cost is recommended.

4. We conducted an empirical study and reported our findings

based on six real world applications.

The rest of this paper is organized as follows. Section 2 introduces

the basic concepts of CT and switching cost with a motivating ex-

ample. Section 3 presents the measurement of switching cost, and

discuss its characteristics. Section 4 presents all algorithms that

are used in this work. Section 5 gives our experiment and analysis.

Section 6 reports real world case studies. Section 7 discusses the

threats to validity. Section 8 summarizes the related work, and

Section 9 concludes this paper.

2. Motivating example

Mobil apps are reshaping human daily life. Currently, there are

more than 1.5 million apps available to download for either Apple

or Android users. However, it is not easy to assure their quality

and user experience, as the behaviour of apps is often affected by

many factors.

For example, let us consider a system build-in app: the voice

call. How this app handles a call depends on phone environ-

mental settings and users actions. If the user enables sound, the

phone should ring when there are incoming calls, and if the user

switches the mode to airplane, no calls can be received or made.

Furthermore, the system should allow the user to call numbers

from text content such as SMS, notes or web sites. If the user is

listening to music while a call arrives, the user would love the

system to resume the music as soon as the call is finished.

To test such functionalities by CT, firstly we need to define the

testing model. In this paper we suppose that the SUT (Software

Under Test) contains n independent parameters, and each param-

eter p i has v i discrete values chosen from a value set V i (v i = | V i |).
We call an n −tuple (x 1 , x 2 , . . . , x n) as a test case t , where x i ∈ V i for

1 ≤ i ≤ n ; and a set of test cases as a test suite T = { t 1 , t 2 , . . . , t m

} .
In our example, to represent different scenes of making and receiv-

ing voice calls, we select five parameters to form a simplified test-

ing model. Table 1 shows it, where the first three parameters are

Download	English	Version:

https://daneshyari.com/en/article/4972314

Download	Persian	Version:

https://daneshyari.com/article/4972314

Daneshyari.com

https://daneshyari.com/en/article/4972314
https://daneshyari.com/article/4972314
https://daneshyari.com/

