
Information and Software Technology 80 (2016) 73–88

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Functional size approximation based on use-case names

Mirosław Ochodek

∗

Faculty of Computing, Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, Pozna ́n 60-965, Poland

a r t i c l e i n f o

Article history:

Received 25 April 2016

Revised 16 August 2016

Accepted 19 August 2016

Available online 21 August 2016

Keywords:

Functional size measurement

Approximate software sizing methods

COSMIC

IFPUG Function Point Analysis

Size estimation methods

Use cases

a b s t r a c t

Context: Functional size measures, such as IFPUG Function Points or COSMIC, are widely used to sup-

port software development effort estimation. Unfortunately, applying the COSMIC or IFPUG Function Point

Analysis methods at early stages of software development is difficult or even impossible because avail-

able functional requirements are imprecise. Moreover, the resources that could be allocated to perform

such measurement are usually limited. Therefore, it is worth investigating the possibility of automating

the approximation of IFPUG Function Points or COSMIC early in software projects.

Objective: Given a UML use-case diagram or a list of use-case names, approximate COSMIC and IFPUG

FPA functional size in an automatic way.

Method: We propose a two-step process of approximating the functional size of applications based on

use-case goals. In the first step, we process the names of use cases, expressed in a natural language and

assign each of their goals into one of thirteen categories. In the second step, we employ information

about categories of use-case goals and historical data to construct prediction models and use them to

approximate the size in COSMIC and Function Points. We compare the accuracy of the proposed methods

to the average use-case approximation (AUC), which is their most intuitive counterpart, and the automatic

method proposed by Hussain, Kosseim and Ormandjieva (HKO).

Results: The prediction accuracy of the two proposed approximation methods was evaluated using a

cross-validation procedure on a data set of 26 software development projects. For both methods, the

prediction error was low compared to AUC and HKO.

Conclusion: Developers who document functional requirements in a form of use cases might use the

proposed methods to obtain an early approximation of the application size as soon as use-case goals are

identified. The proposed methods are automatic and can be considered as a replacement for AUC.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important problems considered in Project-

Portfolio Management (PPM) is the selection of projects to the

project pipeline [1] . To make a good decision, one needs to know

at least the business value and effort associated with each project.

Obviously, in the context of PPM exact values are not known, and

one has to rely on their indicators. One of such indicators, com-

monly accepted in software development projects, is the functional

size of an application [2] .

Several functional size measurement (FSM) methods have been

proposed so far. The most recognized among them is IFPUG Func-

tion Point Analysis (FPA). The method was proposed by Albrecht

in 1979 [3] . It has been widely accepted by industry, and several

different variants have been proposed so far, e.g., NESMA FPA [4] ,

∗ Corresponding author.

E-mail address: mochodek@cs.put.poznan.pl , Miroslaw.Ochodek@cs.put.poznan.pl

FISMA FPA [5] . The IFPUG FPA method inspired other FSM methods

such as Mark II FP [6] and COSMIC [7] .

In the context of PPM, the decision maker is often presented

with a business problem description and outline of the solution

[8,9] . As regards software projects, one method of presenting a so-

lution outline is a UML use-case diagram [10] , augmented with

some comments. To ensure the usefulness of such diagrams, the

names of use cases must correctly reflect the user goals. Therefore,

it would be beneficial to investigate if the names of use cases pro-

vide information that might be valuable in the context of size ap-

proximation

1 and effort estimation. Therefore, the following prob-

lem can be formulated:

Core problem: Given a list of use-case names and historical data re-

garding functional size measurement, provide an approximation of the

1 To avoid confusion between the terms: effort estimation and size estimation , it is

commonly accepted to use the term size approximation when referring to the latter

[11] .

http://dx.doi.org/10.1016/j.infsof.2016.08.007

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.08.007&domain=pdf
mailto:mochodek@cs.put.poznan.pl
mailto:Miroslaw.Ochodek@cs.put.poznan.pl
http://dx.doi.org/10.1016/j.infsof.2016.08.007

74 M. Ochodek / Information and Software Technology 80 (2016) 73–88

functional size of an application, expressed in COSMIC or IFPUG Func-

tion Points.

There are two types of methods solving the above-stated

problem: (1) automatic and (2) requiring expert judgment. In

this paper, we are interested in the former ones. Investigating

this problem not only provides insight into how good computers

can be at solving AI-like problems, but it can also be useful in a

situation when there are many project proposals on the table, and

one needs to evaluate them quickly (as it is in the case of PPM).

As follows from the overview of functional size approximation

methods prepared by COSMIC Consortium [11] and from the lit-

erature review performed by the author, the methods applicable

to Core problem are the average use-case approximation (AUC)

[12,13] and the HKO method (Hussain–Kosseim–Ormandjieva) [14] .

The former ignores the names of use cases—it takes into account

only their number. It is interesting to see how taking into account

use-case names can improve the accuracy of functional size ap-

proximation. The HKO method is based on frequency of linguis-

tic features, and originally was proposed as a solution to a differ-

ent problem. However, it seems inappropriate to arbitrary reject it

from the set of possible approaches.

In this paper, we introduce a categorization scheme of use-case

goals reflected in use-case names. It aims at capturing the rela-

tionship between the goals of use cases and the semantics of use-

case scenarios. Similar approaches that rely on the categorization

of use-case transactions and actions have been successfully applied

to other problems, such as effort estimation based on use-case sce-

narios [15,16] and inferring about events in use cases [17] . The

approach seems promising also in the context of the considered

problem. Therefore, it seems beneficial to investigate the following

research questions:

RQ1: Is it possible to propose a categorization scheme of use-

case goals that would support functional size approximation

based on use-case names?

RQ2: How to automatically categorize use-case names (expressed

in a natural language) according to the proposed categories

of use-case goals?

RQ3: How to automatically approximate COSMIC and IFPUG FPA

functional size of an application based on use-case names

labeled with the categories of goals and historical data con-

cerning functional size measurement?

The paper is organized as follows. In Section 2 , we present

background information regarding use cases and the FSM meth-

ods considered in the study. We also discuss related studies con-

cerning functional size approximation. Section 3 presents the re-

search methodology, including the framework used to evaluate the

accuracy of the approximation methods. In Section 4 , we present

the data set of twenty-six software development projects consid-

ered in the study. Section 5 introduces thirteen categories of use-

case goals and discusses their usefulness in the context of size

approximation (RQ1). Section 6 addresses question RQ2. We pro-

pose a method for automatic classification of use-case goals, and

evaluate its prediction accuracy. Section 7 focusses on RQ3 and

proposes two functional approximation methods. Evaluation of the

prediction accuracy of these methods is presented in Section 8 .

Section 9 discusses the threats to validity of the study. Ths paper

is concluded in Section 10 .

2. Background and related work

2.1. Use cases

Use cases are a popular [18,19] scenario-based technique of de-

scribing the interaction between end-user (actors) and the sys-

tem; which leads to obtaining an important goal from the user’s

Repository of scientific papers

UC1: Remove a paper

Actors: Author

Main scenario:
1. Author requests to view his/her papers.
2. System presents the author's papers.
3. Author selects a paper to be removed from the repository.
4. Author asks the system to remove the selected paper.
5. System removes the paper from the repository.
6. System informs the author that the paper has been removed.

Alternative scenarios:
1.A. Author does not have any papers in the repository.
 1.A.1. System informs the author that he/she does not have
 any papers in the repository.
 1.A.2. Use case finishes.

Author

Remove a paper

Repository of scientific papers

UC1: Remove a paper

Actors: Author

Main scenario:
1. Author requests to view his/her papers.
2. System presents the author's papers.
3. Author selects a paper to be removed from the repository.
4. Author asks the system to remove the selected paper.
5. System removes the paper from the repository.
6. System informs the author that the paper has been removed.

Alternative scenarios:
1.A. Author does not have any papers in the repository.
 1.A.1. System informs the author that he/she does not have
 any papers in the repository.
 1.A.2. Use case finishes.

Author

Remove a paper

Fig. 1. An example of a use case and use-case diagram.

perspective. These are called user-level use cases (there are also

business-level use cases that describe the interaction between peo-

ple and organizational units). The nature of user-level use cases is

accurately captured by the OTOPOP rule (one time, one place, one

person) [20] . The rule states that the goal of a user-level use case

should be attainable by a single user during a single session with

the system.

State-of-the-art guidelines for writing use cases [21,22] advise

us to document use cases with:

• A name that accurately expresses the goal of an actor. It should

be formulated using a simple [verb + object] clause with an im-

plied subject being the actor of the use case (e.g., “submit a

paper”);

• Actors participating in the use case (people, devices, or external

systems);

• The main scenario , i.e. the most common sequence of steps al-

lowing the actor to obtain the goal; according to Övergaard and

Palmkvist [23] , use-case scenarios may present different levels

of details regarding the internal processing within the system,

i.e., black-box (only the interaction between the actor and the

system is described), gray-box (the most crucial system opera-

tions are presented that are important for the interaction with

the actor), and white-box (detailed information about the inter-

nal processing is revealed).

• Alternative scenarios that are executed in response to the occur-

rence of some specified events (e.g., a user provided an invalid

input).

An example of a use case specified according to the aforemen-

tioned guidelines is presented in Fig. 1 .

Use cases are often visualized using UML use-case diagrams

(UCD), which show actors and their goals. An example of a UCD

is presented in Fig. 1 . This diagram helps to get an overview of a

use-case model without overwhelming the reader with the details

of use-case scenarios.

There are three main types of relationships that can be defined

between use cases: inclusion, extension, and generalization [22] .

They are introduced in use-case models to reduce redundancies of

scenarios between use cases. In the paper, we will reject included

and specialized use cases from the analysis unless they represent

complete, user-level use cases on their own.

Download English Version:

https://daneshyari.com/en/article/4972315

Download Persian Version:

https://daneshyari.com/article/4972315

Daneshyari.com

https://daneshyari.com/en/article/4972315
https://daneshyari.com/article/4972315
https://daneshyari.com

