
Information and Software Technology 80 (2016) 138–157 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Automating feature model refactoring: A Model transformation 

approach 

Mohammad Tanhaei, Jafar Habibi ∗, Seyed-Hassan Mirian-Hosseinabadi 

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 24 January 2016 

Revised 25 July 2016 

Accepted 30 August 2016 

Available online 3 September 2016 

Keywords: 

Feature model refactoring 

Model transformation & refactoring 

a b s t r a c t 

Context: Feature model is an appropriate and indispensable tool for modeling similarities and differences 

among products of the Software Product Line (SPL). It not only exposes the validity of the products’ 

configurations in an SPL but also changes in the course of time to support new requirements of the 

SPL. Modifications made on the feature model in the course of time raise a number of issues. Useless 

enlargements of the feature model, the existence of dead features, and violated constraints in the feature 

model are some of the key problems that make its maintenance difficult. 

Objective: The initial approach to dealing with the above-mentioned problems and improving maintain- 

ability of the feature model is refactoring. Refactoring modifies software artifacts in a way that their 

externally visible behavior does not change. 

Method: We introduce a method for defining refactoring rules and executing them on the feature model. 

We use the ATL model transformation language to define the refactoring rules. Moreover, we provide an 

Alloy model to check the feature model and the safety of the refactorings that are performed on it. 

Results: In this research, we propose a safe framework for refactoring a feature model. This framework 

enables users to perform automatic and semi-automatic refactoring on the feature model. 

Conclusions: Automated tool support for refactoring is a key issue for adopting approaches such as uti- 

lizing feature models and integrating them into the software development process of companies. In this 

work, we define some of the important refactoring rules on the feature model and provide tools that 

enable users to add new rules using the ATL M2M language. Our framework assesses the correctness of 

the refactorings using the Alloy language. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Software product lines are known as an efficient way for devel- 

oping a variety of related products in a specific domain [1] . One of 

the important properties of the SPL is managed reuse in a partic- 

ular domain [2] . The feature model is one of the key elements in 

managing the core assets of the SPL. It can model similarities and 

variabilities in an SPL. The feature model is first introduced in the 

Feature-Oriented Domain Analysis (FODA) approach [3] . 

Feature models have been widely used in engineering as well 

as the development of software product lines since their intro- 

duction [4] . They are used in a variety of software product line 

development approaches [5] ranging from model-driven develop- 

∗ Corresponding author. 

E-mail addresses: tanhaei@ce.sharif.edu (M. Tanhaei), jhabibi@sharif.edu 

(J. Habibi), hmirian@sharif.edu (S.-H. Mirian-Hosseinabadi). 

ment [6] to software factories [7] to feature-oriented programming 

[8] to generative programming [9] . 

Feature model utilizes a tree-like structure to represent the 

variations in the SPL. A root feature can own some children, 

and the children can have their children too. Each feature of the 

feature model has some relations to other features and has some 

constraints in appearing in the configurations. To include a feature 

in a product configuration, one should meet all constraints related 

to that feature. 

By the passage of time, external obligations and new require- 

ments lead the feature model to change. In this situation, two 

different approaches can be used to deal with the changes at the 

feature model level. 

– Clean Approach: Perform domain analysis and survey the 

feature model for the optimized location of changes and add 

support for new requirements to it. 

http://dx.doi.org/10.1016/j.infsof.2016.08.011 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.08.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.08.011&domain=pdf
mailto:tanhaei@ce.sharif.edu
mailto:jhabibi@sharif.edu
mailto:hmirian@sharif.edu
http://dx.doi.org/10.1016/j.infsof.2016.08.011


M. Tanhaei et al. / Information and Software Technology 80 (2016) 138–157 139 

– Dirty Approach: Change the feature model in a way that the 

new requirement can be supported. This approach has higher 

speed and lower accuracy compared to the Clean Approach. 

While the best way to deal with the changes in the SPL and 

especially the feature model is to use the clean approach, the 

changes on the feature model are usually performed on a re- 

stricted and local area without surveying the effect of the change 

on other relations and constraints of the feature model (dirty 

approach). That usually happens because of time pressure and 

cost constraints in SPL development approaches. After performing 

some modifications on the feature model and by gathering to- 

gether the changes, several types of problems in the feature model 

might appear [10] . The extra effort that we have to do in future 

because of using the dirty development approach is known as the 

technical debt [11] . Features that cannot be present in any con- 

figuration, features that are misallocated, features with the wrong 

type, and useless integrity constraints are some examples of the 

problems in a feature model that are developed using the dirty 

approach. 

In these situations, we need to perform some changes on the 

feature model, changes that do not alter the validity of the product 

configurations and improve the overall structure of the feature 

model and resolve the problems mentioned above. We refer to 

these modifications as “feature model refactoring”, each being an 

alteration in the feature model that does not change the validity 

of its configurations but improves its non-functional properties. 

Refactoring consists of small steps, which when aggregated can 

bring about a significant change in the software artifacts [12] . 

Every organization that selects the dirty approach for developing 

a product line needs to perform some refactorings on the code, 

design, architecture as well as the feature model at a time. Refac- 

toring is one of the ways to pay the technical debt [11] . The first 

step in performing refactoring is to find a precise way of defining 

and executing the refactoring rules. And the second step is to 

check the correctness of the modifications done on the feature 

model. Our framework helps with performing these two steps. 

For a motivating example of refactoring a feature model, con- 

sider an SPL which has a feature named simple access control for 

authenticating users. By the passage of time, some set of new fea- 

tures is developed in the SPL that cannot be supported by the old 

way of checking access control. As a result, the development team 

adds a new feature to the feature model to support the require- 

ments of the new feature named advanced access control which 

is an alternative to the simple access control feature. Every new 

product containing the newly developed features needs to use the 

advanced access control feature instead of the simple access control 

feature. In time, if one of the features which require the advanced 

access control feature to operate correctly becomes mandatory in 

the feature model, the simple access control becomes completely 

useless and cannot be present in any future product. Feature 

model refactoring can find such anomalies in the feature model 

and improve the overall quality of the feature model by performing 

some modification on it (e.g. removing useless features). 

Using model transformation is a suitable approach for alter- 

ing models. Model to Model (M2M) transformation languages 

allow one to transform a source model into a target model. In 

performing a transformation, some elements within the source 

model may not be transformed to the target model or some new 

elements based on the target model form may be added to the 

destination model [13] . To perform a transformation, one needs 

the semantics of the source and destination models. The semantics 

of the models specify model elements and their relations in that 

model. Metamodels can be used to define the semantics of the 

models [14] . In this paper, we use Ecore metamodel notation to 

define the feature model metamodel. 

Performing changes on the feature model is not the end of 

the refactoring process. After altering a model, one should ensure 

that the set of the valid configuration of the SPL is not changed 

by refactoring a feature model [12] . We used the Alloy language 

to check the correctness of the performed refactoring on the 

feature model. Alloy is an analysis language that uses SAT-Solvers 

to analyze the models defined using its syntax [15] . It enables 

the user to define the models in first-order logic. Using Alloy 

allows the algorithms to be expressed with fewer lines of code 

as compared to other languages [15] . In this paper, we defined 

several predicates, rules, and a way to model the feature model 

in the Alloy language. Each feature model is transformed to an 

Alloy model, and then an assertion for assessing the equality 

of the feature model before and after performing refactoring is 

checked on the model. If Alloy Analyzer finds a contradiction in 

the models, modifications done on the feature model are not safe; 

otherwise, the modifications are deemed safe. 

Automated tool support for refactoring is a key issue for adopt- 

ing approaches such as utilizing feature model and integrating 

them into the software development process of companies. In 

this work, we define some of the important refactoring rules on 

the feature model and provide tools that enable users to add 

new rules using the ATL M2M language. Our approach not only 

proposes refactorings but makes sure that the refactorings are also 

performed correctly. The notion of the Mandatory From Lowest 

Common Ancestor (MFLCA) and Optional From Lowest Common 

Ancestor (OFLCA) in this paper helps in finding some inconsisten- 

cies and problems such as local dead features and false feature 

types in the feature model. 

By refactoring a feature model, the related artifacts may be 

influenced. For example, by removing a feature, the artifacts such 

as code and design which are related to that feature should be 

revised. Feature mapping is one of the approaches to keep the 

relation between feature model and other artifacts of the SPL. By 

refactoring a feature model, all affected features and their related 

artifacts should be investigated. Seidl et al. [16] proposed a frame- 

work to co-evolve models and feature mapping in the SPL. One can 

use their framework to maintain consistency of the model, feature 

mapping, and other related artifacts after performing refactoring. 

In the remainder of this paper, we first describe the background 

and history relating to the feature model, model transformation, 

and Alloy in Section 2 . The overall methodology of safe refactoring 

on the feature model is presented in Section 3 . Section 4 de- 

scribes the idea of automating feature model refactoring using 

M2M tools. In that section, we first define the feature model 

metamodel in Section 4.1 , and then we introduce the approaches 

used to specify the feature model refactoring using the M2M 

transformation languages in Section 4.2 . The Alloy model needed 

to analyze the feature model is presented in Section 5 . The aim 

of Section 6 is to evaluate the proposed framework using different 

approaches. The practical applicability of the framework is shown 

in Section 6.1 using an example feature model. Section 6.2 takes 

a look at the effect of refactoring on the structural, cognitive, and 

compound complexity of the feature model. The performance of 

the proposed approach is assessed in Section 6.3 . Section 6.4 sur- 

veys the computational complexity of one of the patterns of the 

proposed framework. In Section 7 we survey the related works. 

The paper concludes in Section 8 with a summary and a discussion 

of possible future work. 

2. Background 

2.1. Feature model 

Feature model was developed in 1990 and first used in Feature- 

Oriented Domain Analysis (FODA) development approach [3] . The 



Download English Version:

https://daneshyari.com/en/article/4972318

Download Persian Version:

https://daneshyari.com/article/4972318

Daneshyari.com

https://daneshyari.com/en/article/4972318
https://daneshyari.com/article/4972318
https://daneshyari.com

