
Information and Software Technology 80 (2016) 217–230 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Re ducing sche duling sequences of message-passing parallel programs 

Dunwei Gong 

a , b , ∗, Chen Zhang 

a , Tian Tian 

c , Zheng Li d 

a School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P.R. China 
b School of Electrical Engineering and Information Engineering, LanZhou University of Technology, Lanzhou, Gansu 730 0 0 0, P.R. China 
c School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong 250101, P.R. China 
d College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 10 0 029, P.R. China 

a r t i c l e i n f o 

Article history: 

Received 24 November 2015 

Revised 22 August 2016 

Accepted 11 September 2016 

Available online 15 September 2016 

Keywords: 

Software testing 

Message-passing parallel program 

Reduction of scheduling sequences 

Statement coverage 

Equivalent class 

a b s t r a c t 

Context: Message-passing parallel programs are commonly used parallel programs. Various scheduling se- 

quences contained in these programs, however, increase the difficulty of testing them. Therefore, reducing 

scheduling sequences by using appropriate approaches can greatly improve the efficiency of testing these 

programs. 

Objective: This paper focuses on the problem of reducing scheduling sequences of message-passing par- 

allel programs, and presents a novel approach to reducing scheduling sequences. 

Method: In this approach, scheduling sequences that affect the target statement are first determined based 

on the relation between a scheduling sequence and the execution of the target statement. Then, these 

scheduling sequences are divided into a number of equivalent classes according to the execution of the 

target statement. Finally, for each scheduling sequence in the same equivalent class, the values of the two 

proposed indexes are calculated, and the scheduling sequence with the minimal comprehensive value is 

selected as the one after reduction. 

Results: To evaluate the performance of the proposed approach, it is applied to test 12 typical message- 

passing parallel programs. The experimental results show that the proposed approach reduces 63% 

scheduling sequences on average. And compared with the method without reduction, and the method 

with randomly selecting scheduling sequences, the proposed approach shortens 67% and 52% execution 

time of a program for covering the target statement on average, respectively. 

Conclusion: The proposed approach can greatly reduce scheduling sequences, and shorten execution time 

of a program for covering the target statement, hence improving the efficiency of testing the program. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Testing is an important way to ensure the correctness of soft- 

ware, and a lot of time consumption increases the cost of soft- 

ware testing. Existing statistics have shown that more than 50% 

of the total cost in developing software is consumed on testing 

[1] . Along with broad applications of software testing, there are 

more and more intense demands for the methods of testing high- 

performance software [2] . Therefore, it is of considerable necessity 

to shorten time in testing high-performance software by using ap- 

propriate methods. 

A parallel program is referred to contain two or more processes 

with parallel execution [3] . Parallel programs are very popular in 

real world applications, since most large scale science and engi- 

∗ Corresponding author. 

E-mail addresses: 340355960@qq.com , dwgong@vip.163.com (D. Gong). 

neering computation, such as energy exploration, medicine, and 

military [4] , is often implemented by parallel programs. Generally, 

parallel programs have good portability, powerful functions, and 

high efficiency [5] . In addition, almost all vendors engaging in par- 

allel computation provide support for them. Among various paral- 

lel programs, message-passing parallel programs are widely used 

in practice. They are written with FORTRAN, C or other languages. 

Test criteria are of considerable importance in software testing, 

due to guiding the generation of test data, and evaluating the ad- 

equacy of testing. So far, various test criteria have been proposed, 

among which statement coverage is commonly used for structure 

coverage. Generally, if a given statement (called the target state- 

ment) can be executed with a test datum as the input of a pro- 

gram, the test datum is called to cover the target statement. 

For serial programs, one execution is enough to judge whether 

a test datum covers the target statement or not. However, this 

is not true for message-passing parallel programs. Uncertain ex- 

http://dx.doi.org/10.1016/j.infsof.2016.09.003 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.09.003&domain=pdf
mailto:340355960@qq.com
mailto:dwgong@vip.163.com
http://dx.doi.org/10.1016/j.infsof.2016.09.003


218 D. Gong et al. / Information and Software Technology 80 (2016) 217–230 

ecutions of message-passing parallel programs exist where differ- 

ent coverage results may be caused for the same test datum un- 

der different scheduling sequences. Therefore, a test datum can- 

not be judged to fail to cover the target statement, if the target 

statement is not executed with the test datum under a schedul- 

ing sequence. To this end, the coverage results of the target state- 

ment with the same test datum under other scheduling sequences 

should be further investigated. From this viewpoint, parallel pro- 

grams consume much more execution time for statement cover- 

age testing than their serial counterparts, indicating considerable 

necessity of researching methods of shortening execution time for 

statement coverage testing of parallel programs. 

This paper focuses on the problem of reducing scheduling se- 

quences for statement coverage of message-passing parallel pro- 

grams. To this end, a scheduling sequence that affects the tar- 

get statement is first defined based on the relation between the 

scheduling sequence and the execution of the target statement, 

and a method of seeking these scheduling sequences is given. Fol- 

lowing that, the equivalent class of scheduling sequences of the 

target statement is defined, and a method of forming a number 

of equivalent classes is presented. Finally, a number of criteria are 

proposed to evaluate each scheduling sequence in an equivalent 

class, and the scheduling sequence with the minimal comprehen- 

sive value is selected as the one after reduction. 

The contributions of this paper are mainly manifested in 

the following three aspects: (1) presenting a method of seeking 

scheduling sequences that affect the target statement, (2) propos- 

ing a method of forming a series of equivalent classes of schedul- 

ing sequences for the target statement, and (3) providing a number 

of criteria to select an appropriate scheduling sequence. 

The remainder of this paper is organized as follows. 

Section 2 reviews related work. The proposed approach is stated 

in detail in Section 3 which includes determining scheduling 

sequences that affect the target statement, forming a series of 

equivalent classes of scheduling sequences, and selecting an 

appropriate scheduling sequence from each equivalent class. In 

Section 4 , the applications of the proposed approach in testing 

several typical message-passing parallel programs and the compar- 

ative experiments are provided. Finally, Section 5 summarizes the 

whole paper, and points out several topics to be further studied. 

2. Related work 

2.1. Parallel programs testing 

Since multiple processes execute simultaneously, parallel pro- 

grams can make full use of all the hardware resources provided by 

a system, and improve the efficiency of solving a problem. Parallel 

programs are, however, subjected to such problems as data race, 

resource conflict, deadlock, and uncertain execution, to say a few, 

which greatly increases the difficulty in testing. Fortunately, there 

has been some valuable research on testing parallel programs. 

Christakis et al. built the communication graph of a program by 

analyzing the source code of this program, and used the graph to 

detect such defects as deadlock and data conflict [6] . Based on the 

theory of semantics approximation, Miné analyzed the relations 

among processes of an embedded parallel program, and employed 

them to detect defects [7] . In the formal verification tool, TASS, de- 

veloped by Siegel et al., the correctness of a program is validated 

by constructing the abstract model of this program, conducting the 

symbolic execution, and enumerating the whole state space [8] . 

Given the fact that all the above methods do not actually execute 

the program under test, they are called the static methods. Model 

checking is also a representative static method. When it is applied 

to test parallel programs, the problem of combination explosion, 

however, appears due to a large number of interactions between 

processes. To overcome the above drawbacks, Flanagan et al. pro- 

posed a method of dynamically reducing partial orders [9] . Based 

on this method, Vakkalanka et al. developed a model checking tool, 

ISP, and applied it to seek deadlock in a program [10] . 

Compared with the static methods, the dynamic methods actu- 

ally execute a program under test. Krammer et al. checked whether 

the interfaces of a parallel program are correct or not by executing 

this program [11] . By using the defect inspection tool developed by 

Vetter et al., such defects as deadlock, unmatched collective opera- 

tions, and resource depletion occurring when executing a program 

can be found [12] . For the testing tool developed by Park et al., it 

seeks defects in a program by inspecting the communications be- 

tween processes [13] . In the reachability testing method proposed 

by Lei et al., each partial order synchronization sequence is exe- 

cuted only once, and the ones having been executed are not saved 

any longer [14] . Carver et al. proposed a distributed reachability 

testing method to improve the efficiency of testing by executing 

multiple test sequences simultaneously [15] . Given the fact that 

traditional unit testing does not take such problems as deadlock 

and data race into account, Shivaprasad et al. extended the existing 

unit testing framework to suit for parallel programs [16] . Hwang 

et al. obtained a number of synchronous pairs by using reacha- 

bility testing, and employed them to generate test data that cover 

statements [17] . For distributed programs, Ferguson et al. utilized 

a chaining approach to generate test data for covering statements 

[18] . In addition, Tian et al. employed a co-evolutionary genetic al- 

gorithm to generate test data that cover paths [19] . 

If the static and the dynamic methods are combined together, 

and employed to test a program, the efficiency of testing will 

be further improved. Chen et al. presented a combined testing 

method. In this approach, some basic information of a program is 

first obtained by using the static analysis, and then utilized to pre- 

dict the behaviors of the branches not having been covered dur- 

ing the execution of the program [20] . With regard to the method 

of unit testing for parallel programs proposed by Schimmel et al., 

the source codes possible to cause data race are first sought by 

using the static analysis, and then the execution traces of the pro- 

gram are obtained by employing the dynamic methods. Based on 

them, data race in this program are further inspected [21] . Addi- 

tionally, Liao et al. proposed a synchronous communication model 

and its simplified version for message-passing parallel programs. 

These models can detect such defect as deadlock in a program be- 

fore and after executing it [22] . 

Some scholars have proposed several testing criteria for par- 

allel programs based on previous test criteria for serial counter- 

parts. For shared memory parallel programs, Yang et al. expanded 

the coverage criteria for serial programs to those for their parallel 

counterparts according to the characteristics of parallel programs 

[23] . Further, they proposed an approach to seeking paths that sat- 

isfy all-du-path coverage, one of coverage criteria for parallel pro- 

grams [24] . Souza et al. presented such criteria as all-nodes-s cov- 

erage, all-nodes-r coverage, all-nodes coverage, all-edges-s cover- 

age, as well as all the edge coverage based on the control flow 

graph of a program, and all-defs coverage, all-defs-s coverage, all-c- 

uses coverage, all-p-uses coverage, all-s-uses coverage, all-s-c-uses 

coverage, as well as all-s-p-uses coverage based on the data flow 

graph of this program [25] . Alper et al. investigated mutating test- 

ing of parallel programs, and presented a novel criterion to judge 

whether a mutant is killed or not aiming to the uncertain execu- 

tion of parallel programs [26] . 

There have been many studies on testing parallel programs. The 

object of most studies, however, is not message-passing parallel 

programs. Therefore, these studies cannot be applied directly to 

testing message-passing parallel programs. From this viewpoint, it 

is very urgent to research on effective methods for testing parallel 

programs according to the characteristics of these programs. 



Download English Version:

https://daneshyari.com/en/article/4972321

Download Persian Version:

https://daneshyari.com/article/4972321

Daneshyari.com

https://daneshyari.com/en/article/4972321
https://daneshyari.com/article/4972321
https://daneshyari.com

