
Information and Software Technology 80 (2016) 231–244 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Towards designing an extendable vulnerability detection method for 

executable codes 

� 

Maryam Mouzarani, Babak Sadeghiyan 

∗

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 16 September 2015 

Revised 31 July 2016 

Accepted 12 September 2016 

Available online 13 September 2016 

Keywords: 

Software vulnerability 

Executable codes 

General specification 

Extendable method 

a b s t r a c t 

Context: Software vulnerabilities allow the attackers to harm the computer systems. Timely detection and 

removal of vulnerabilities help to improve the security of computer systems and avoid the losses from 

exploiting the vulnerabilities. 

Objective: Various methods have been proposed to detect the vulnerabilities in the past decades. How- 

ever, most of these methods are suggested for detecting one or a limited number of vulnerability classes 

and require fundamental changes to be able to detect other vulnerabilities. 

In this paper, we present a first step towards designing an extendable vulnerability detection method that 

is independent from the characteristics of specific vulnerabilities. 

Method: To do so, we first propose a general model for specifying software vulnerabilities. Based on this 

model, a general specification method and an extendable algorithm is then presented for detecting the 

specified vulnerabilities in executable codes. 

As the first step, single-instruction vulnerabilities–the vulnerabilities that appear in one instruction–

are specified and detected. We present a formal definition for single-instruction vulnerabilities. In our 

method, detection of the specified vulnerabilities is considered as solving a satisfaction problem. The 

suggested method is implemented as a plug-in for Valgrind binary instrumentation framework and the 

vulnerabilities are specified by the use of Valgrind intermediate language, called Vex. 

Results: Three classes of single-instruction vulnerabilities are specified in this paper, i. e. division by zero, 

integer bugs and NULL pointer dereference. The experiments demonstrate that the presented specification 

for these vulnerabilities are accurate and the implemented method can detect all the specified vulnera- 

bilities. 

Conclusion: As we employ a general model for specifying the vulnerabilities and the structure of our 

vulnerability detection method does not depend on a specific vulnerability, our method can be extended 

to detect other specified vulnerabilities. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Detecting software vulnerabilities has been studied widely in 

the past decades. As a result various methods are presented to de- 

tect vulnerabilities more accurately, with less false positives and 

false negatives. However, most of these methods are suggested for 

detecting one or a limited number of vulnerabilities. Thus, their 

algorithms should be changed to detect new vulnerabilities [1] . 

� This work is supported in part by APA Research Center of Amirkabir University 

of Technology (Tehran Polytechnic). 
∗ Corresponding author. 

E-mail address: basadegh@aut.ac.ir (B. Sadeghiyan). 

Therefore, the enhanced techniques applied in one algorithm are 

not usable for detecting other vulnerabilities. 

As an example, many advances have occurred in detecting the 

buffer overflow vulnerability during the past years. Different tech- 

niques have been suggested to detect this vulnerability, such as 

pattern matching [2] , program annotation [3,4] , constraint analy- 

sis [5] and taint analysis [6,7] . If we call the algorithm that an- 

alyzes the program and searches for a vulnerability in it as vul- 

nerability seeking algorithm, most of vulnerability seeking algo- 

rithms in these works are designed based on the mechanism of the 

buffer overflow vulnerability. For example, the vulnerability seek- 

ing algorithm presented in [5] considers the strings in a C program 

as an abstract data type with pre-defined functions, such as str- 

http://dx.doi.org/10.1016/j.infsof.2016.09.004 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.09.004&domain=pdf
mailto:basadegh@aut.ac.ir
http://dx.doi.org/10.1016/j.infsof.2016.09.004


232 M. Mouzarani, B. Sadeghiyan / Information and Software Technology 80 (2016) 231–244 

cpy(), strcat() , etc. The state of each string is also summarized with 

two integer values, i. e. its allocated size and its current length. 

Thus, the content of the strings is not important for this algorithm. 

For each string buffer, the algorithm examines string manipulation 

statements to check whether the maximum length of a string ex- 

ceeds its allocated size. If such condition is detected, a buffer over- 

flow vulnerability would be reported. This algorithm requires fun- 

damental changes to be able to detect another vulnerability, such 

as format string, command injection or dangling pointers. 

It is worth mentioning how we differentiate a vulnerability de- 

tection technique from a vulnerability seeking algorithm. A vul- 

nerability detection technique is the general instruction for find- 

ing vulnerabilities in the programs and is not usually specific to a 

particular vulnerability. For example, taint analysis is a detection 

technique that has been used for detecting various vulnerabilities, 

e. g. SQL injection [8,9] , XSS [8,10] , buffer overflow [6,7] and for- 

mat string [11] . A vulnerability seeking algorithm is an accurately 

defined instruction for analyzing particular programs and seeking 

specific vulnerabilities based on one or a combination of vulnera- 

bility detection techniques. For example, the vulnerability seeking 

algorithm in [5] is designed based on the constraint analysis tech- 

nique to detect buffer overflow in C programs. The design of most 

of the vulnerability seeking algorithms depends on the mechanism 

of the intended vulnerabilities. For example, a successful buffer 

overflow seeking algorithm may not be easily used to detect other 

types of vulnerabilities. 

We believe that an extendable vulnerability seeking algorithm 

could be a solution for this limitation. By an ”extendable vulnera- 

bility seeking algorithm”, we mean an algorithm that is able to de- 

tect the specified vulnerability classes in the target program, even 

the vulnerabilities that are specified in the future. Vulnerabilities 

have some common characteristics and can be defined in a gen- 

eral structure. Also, there are vulnerability detection techniques 

that have been used separately for detecting various vulnerabili- 

ties, such as taint analysis or symbolic execution [12–14] . Thus, an 

extendable vulnerability seeking algorithm that is designed based 

on such techniques may be able to detect different vulnerabilities 

at the same time. 

To be extendable, the vulnerability seeking algorithm should be 

independent from the specification of the vulnerabilities as much 

as possible. In this way, the vulnerability seeking algorithm can 

be improved separately and get benefit from the enhancements 

in other detection techniques. In this paper, we present a first 

step towards designing a general extendable vulnerability detec- 

tion method. This method consists of a general specification model 

for specifying vulnerabilities in a way that is understandable by 

the vulnerability seeking algorithm. It also contains an extendable 

vulnerability seeking algorithm that searches for any specified vul- 

nerabilities in the program automatically. 

There are a limited number of extendable vulnerability seeking 

algorithms and vulnerability specification methods presented by 

now, that will be reviewed in Section 2 . However, there is no ex- 

tendable vulnerability detection method for executable codes. The 

advantages of analyzing executable codes, instead of source codes, 

in detecting software vulnerability have propelled us to take steps 

in designing an extendable vulnerability detection method for exe- 

cutable codes. Reflection of the exact behavior of the program, op- 

timizations and bugs in the compilers, unavailability of the source 

codes and platform-specific details are some reasons that make an- 

alyzing executable codes more preferable [15] . Moreover, analyzing 

the executable codes for detecting the vulnerabilities makes the 

method independent from the development language and thus the 

method would cover more programs. 

In this paper, we consider the vulnerabilities that appear in 

a single instruction. Therefore, the paper is regarded as a first 

step towards designing an extendable detection method. Single- 

Fig. 1. A sample VCG for CVE-2003-0161 [22] . 

instruction vulnerabilities can be specified based on the arguments 

of one instruction, such as division by zero [16] and some inte- 

ger bugs [17–19] . Other vulnerabilities that appear in a scenario, 

in more than one instruction, are not considered in this paper and 

will be studied in our future works. 

We present a general model for specifying the vulnerabilities. 

Based on this model, vulnerabilities are specified by the use of Vex 

language. Vex is an intermediate representation for the executable 

codes that is used in Valgrind binary instrumentation framework 

[20] . The vulnerability seeking algorithm is implemented as a plug- 

in for Valgrind. It automatically searches in executable codes for 

any specified single-instruction vulnerability. The ease of extend- 

ing the method to other single-instruction vulnerabilities will be 

demonstrated. 

Hence, the followings can be considered as the contributions of 

this paper: 

• Presenting a general model for specifying software vulnerabili- 

ties. 

• Presenting a method for specifying the single-instruction vul- 

nerabilities to be detected in the executable codes. 

• Presenting an extendable vulnerability detection method for ex- 

ecutable codes based on the proposed specification model. 

• Specification and detection of vulnerability classes division by 

zero [16] , NULL pointer dereference [21] , integer overflow [17] , 

integer underflow [18] and incorrect width conversion in nu- 

meric type (for integer type) [19] using the proposed extend- 

able detection method. 

This paper is organized as following: Section 2 reviews the re- 

lated works. The general model for specifying software vulnerabil- 

ities is presented in Section 3 . Based on this model, a general ex- 

tendable vulnerability seeking algorithm is presented in Section 4 . 

Section 5 presents the details of designing and implementing an 

extendable vulnerability detection method for executable codes. 

The implemented method is evaluated in Section 6 . We conclude 

the paper and suggest some future works in Section 7 . 

2. Related works 

One of the well-known vulnerability specification methods is 

called Vulnerability Cause Graph (VCG). A VCG is a directed non- 

cyclic graph that illustrates how and why a vulnerability appears in 

a program [22] . It has one leaf node that defines a specific vulner- 

ability. The other nodes are causes that explain the conditions and 

events during the development process that make software vulner- 

able. Fig. 1 illustrates an example VCG. This graph explains how the 

vulnerability CVE-2003-0161 is created in Sendmail mail server. Al- 

though these graphs help the developers learn about different vul- 

nerabilities, the narrative specification of causes prevents them to 

be automatically understandable. Thus, this specification method is 

not usable in an extendable vulnerability detection method. 

Mallouli et al. specify vulnerabilities formally in [23] based 

on Vulnerability Detection Conditions (VDCs). A VDC characterizes 



Download English Version:

https://daneshyari.com/en/article/4972322

Download Persian Version:

https://daneshyari.com/article/4972322

Daneshyari.com

https://daneshyari.com/en/article/4972322
https://daneshyari.com/article/4972322
https://daneshyari.com

