
Information and Software Technology 80 (2016) 245–264 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

GODA: A goal-oriented requirements engineering framework for 

runtime dependability analysis 

Danilo Filgueira Mendonça 

a , c , ∗, Genaína Nunes Rodrigues a , Raian Ali b , Vander Alves a , 
Luciano Baresi c 

a Department of Computer Science, University of Brasilia, Brazil 
b Faculty of Science and Technology, Bournemouth University, United Kingdom 

c Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy 

a r t i c l e i n f o 

Article history: 

Received 7 February 2016 

Revised 5 September 2016 

Accepted 13 September 2016 

Available online 17 September 2016 

Keywords: 

Goal modeling 

Dependability 

Probabilistic model checking 

Runtime analysis 

a b s t r a c t 

Context: Many modern software systems must deal with changes and uncertainty. Traditional depend- 

ability requirements engineering is not equipped for this since it assumes that the context in which a 

system operates be stable and deterministic, which often leads to failures and recurrent corrective main- 

tenance. The Contextual Goal Model (CGM), a requirements model that proposes the idea of context- 

dependent goal fulfillment, mitigates the problem by relating alternative strategies for achieving goals to 

the space of context changes. Additionally, the Runtime Goal Model (RGM) adds behavioral constraints to 

the fulfillment of goals that may be checked against system execution traces. 

Objective: This paper proposes GODA (Goal-Oriented Dependability Analysis) and its supporting frame- 

work as concrete means for reasoning about the dependability requirements of systems that operate in 

dynamic contexts. 

Method: GODA blends the power of CGM, RGM and probabilistic model checking to provide a formal 

requirements specification and verification solution. At design time, it can help with design and imple- 

mentation decisions; at runtime it helps the system self-adapt by analyzing the different alternatives and 

selecting the one with the highest probability for the system to be dependable. GODA is integrated into 

TAO4ME, a state-of-the-art tool for goal modeling and analysis. 

Results: GODA has been evaluated against feasibility and scalability on Mobee: a real-life software system 

that allows people to share live and updated information about public transportation via mobile devices, 

and on larger goal models. GODA can verify, at runtime, up to two thousand leaf-tasks in less than 35ms, 

and requires less than 240 KB of memory. 

Conclusion: Presented results show GODA’s design-time and runtime verification capabilities, even under 

limited computational resources, and the scalability of the proposed solution. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Many failures in software systems stem from poor require- 

ments elicitation [15] and thus a proper understanding of what 

the system is supposed to do is key for its dependability . To 

this end, GORE (Goal-Oriented Requirements Engineering, [31] ) 

offers proved means to decompose technical and non-technical 

∗ Corresponding author. 

E-mail addresses: danilo.filgueira@polimi.it (D.F. Mendonça), genaina@unb.br 

(G. Nunes Rodrigues), r.ali@bu.ac.uk (R. Ali), valves@unb.br (V. Alves), luciano. 

baresi@polimi.it (L. Baresi). 

requirements into well-defined entities (goals) and reason about 

the alternatives to meet them. 

More recently, GORE has been used as means to model and rea- 

son about the systems’ ability to adapt to changes in dynamic envi- 

ronments [1,36] . Goals have been used as both design and runtime 

artifacts. Goal modeling has been used to customize software sys- 

tems with respect to the characteristics of the organization they 

are deployed in [3] , to derive high-variability designs, and to max- 

imize the resilience and adaptivity of deployed systems [46,49] . 

It has also been used as runtime model to respond to dynamic 

changes —while maintaining dependability. For example, goals be- 

come live entities that can self-adapt according to the context [7,8] , 

or are complemented with meta-requirements that refer to their 

http://dx.doi.org/10.1016/j.infsof.2016.09.005 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.09.005&domain=pdf
mailto:danilo.filgueira@polimi.it
mailto:genaina@unb.br
mailto:r.ali@bu.ac.uk
mailto:valves@unb.br
mailto:luciano.baresi@polimi.it
http://dx.doi.org/10.1016/j.infsof.2016.09.005


246 D.F. Mendonça et al. / Information and Software Technology 80 (2016) 245–264 

success or failure and can recover from errors [44] . The Runtime 

Goal Model (RGM) [14] augments goals and tasks with runtime 

specifications to verify whether their instances behave correctly, 

that is, they are dependable. 

In previous work [36] , we proposed the Dependability Contex- 

tual Goal Model, which exploits fuzzy logic to reason about the ef- 

fects the actual context of operation has on both dependability re- 

quirements and dependability attributes. However, after studying 

some further real-life case studies, we have understood that the 

approach could become prohibitively heavy and time-consuming 

due to the effort required in providing declarative rules for each 

different goal, attribute, and context. Defined rules could also be 

corrupted by imprecise domain knowledge. 

In addition, most of the solutions for eliciting dependability re- 

quirements do not take into account the history of failures. This is 

mandatory to be able to foresee probabilities of success and failing 

trends, and thus to support decision making procedures that can 

identify appropriate strategies to keep the system dependable. As 

a consequence, we advocate that dependability requirements mod- 

els must be probabilistic, and that sound approaches and new tools 

be developed to guide self-adaptive capabilities and guarantee the 

fulfillment of goals. 

In this context, probabilistic model checking (PMC) is suitable for 

reasoning about dependability requirements since it helps com- 

pute the probabilities with which these properties are satisfied [6] . 

PMC has been largely supported by tools such as PRISM [30] and 

PARAM [23] . The challenge is thus the conceptualization and for- 

mulation of dependability requirements in a way suitable for PMC. 

This paper proposes the Goal-Oriented Dependability Analysis 

framework (GODA) to model goals and analyze their fulfillment in 

different contexts. GODA takes into account runtime aspects and 

accommodates the implications that contextual information may 

have on goal satisfaction. Since the overall goal satisfaction may be 

impacted by context restrictions, GODA provides a means to spec- 

ify the interplay between them and to estimate the dependability 

of the strategies to fulfill goals in different contexts. At runtime, 

the outcome provided by GODA can be used to analyse whether 

the system is fulfilling its dependability goals. If it turns out that 

the obtained dependability is under a certain threshold, the system 

should consider the strategy (or strategies) that provide the most 

suitable dependability measure. 

The proposed analysis solution relies on discrete-time PMC, 

where required specifications are obtained automatically from con- 

textual runtime goal models. These goal models borrow concepts 

from contextual goal models [1] and runtime goal models [14] . Ob- 

tained models are verified through parametric PMC to take into 

account the possible variability of the probabilities in the model. 

However, since parametric PMC solutions are not fast enough and 

do not scale as needed, we propose an innovative solution for com- 

puting the parametric formulae. Our solution uses model checking 

to precompute the formulae that define the dependability of any 

node of the goal tree and takes into account the type of decompo- 

sition and runtime and context annotations. It then composes the 

different probabilities through suitable rewriting by mimicking the 

tree structure of the goal model. GODA is implemented as an ex- 

tension to TAOM4E [39] : a TROPOS-based requirements elicitation 

and modeling tool implemented on top of the Eclipse framework. 

In this paper, we also report on the empirical evaluation we car- 

ried out. First, we evaluate GODA on Mobee: a real-life software 

system that allows people to share live and updated information 

about public transportation via mobile devices. Mobee has been 

running for over a year and has already more than three thousand 

users. Our results in Mobee show that GODA is capable of perform- 

ing dependability analysis efficiently, allowing it to be used under 

limited computational resources. The second part of the empirical 

study presents a time-space scalability analysis of the parametric 

verification. We artificially created goal models up to two thousand 

leaf-tasks, simulation results show a verification time below 35ms, 

and a use of less than 240 KB of memory in the worst-case. 

The rest of the paper is organized as follows. Section 2 re- 

calls the necessary background. Section 3 presents the concep- 

tual model behind GODA, the proposed dependability analy- 

sis, and sketches our implementation as extension to TAOM4E. 

Section 4 describes the evaluation we carried out. Section 5 sur- 

veys related approaches and Section 6 concludes the paper. 

2. Background 

2.1. Goal modeling and context 

Goal modeling provides a means to analyze the many require- 

ments of the different stakeholders of a software system [10,15,48] . 

As defined by TROPOS [10] , goals are owned by actors and actors 

may inter-depend on each other to reach their goals. Goals are ul- 

timately fulfilled by leaf-tasks , which denote processes to be exe- 

cuted by actors. Goals and tasks are decomposed and organized in 

a tree-structured model. A goal can be decomposed in subgoals or 

refined by a means-end task. Means-end relationships link a goal to 

a (means-end) task whose fulfillment is a sufficient and necessary 

condition to the fulfillment of the goal. A non-leaf task can be de- 

composed into other subtasks. An AND-decomposition requires that 

all sub-nodes to be fulfilled, while an OR-decomposition requires 

that at least one sub-node be fulfilled. Accordingly to TROPOS, 

only one type of decomposition per node is allowed. The alterna- 

tive paths (OR-decompositions) in the goal tree can be evaluated 

with respect to qualitative objectives called soft-goals . Soft-goals 

are goals without a clear-cut criteria for their fulfillment. Contri- 

bution links identify the positive or negative impact of alternatives 

on soft-goals. 

Fig. 1 presents the different concepts related to goal mod- 

elling used by GODA. A single system actor (Mobee Mobile) has 

a root goal G 1 , which is AND-decomposed into G 3 and G 4 , mean- 

ing both subgoals must be achieved to fulfill G 1 . Goal G 3 is AND- 

decomposed into G 8 and G 9 , which are linked to tasks T 1 through 

means-end decomposition links. Other goals in the model are re- 

fined in a similar way. Tasks are also refined through AND/OR- 

decompositions, except leaf-tasks such as T 1.21 and T 1.22 . Despite 

the support for multiple actors in TROPOS, in this work we con- 

sider a single system actor, i.e., all goals, tasks and relationships 

belonging to a system actor model. 

An OR-decomposition represents alternative ways of fulfilling 

actor’s goals [49] . For instance, task T 1.1 : Fetch geolocation (a sub- 

tree of means-end task T1: Track line location ) has two alternative 

tasks to track geo-location: Fetch GPS and Fetch triangulation . Each 

task contributes to the soft-goal Geolocation accuracy through pos- 

itive or negative contribution links. Additionally, the fulfillment of 

a goal, the alternatives to do it, and the quality of each alterna- 

tive can all be context-dependent [1] . In a Contextual Goal Model 

(CGM), context is defined as a formula of world predicates, hence- 

forth defined as context facts. For example, if the context formed 

by fact GPS Available does not hold, the only way of fetching the 

geo-location would be through triangulation. Or, if Battery ≤15 

holds, only manual information should be collected and goal G 4 

is disabled, meaning that G 3 alone satisfies G 1 in that context. 

2.2. Probabilistic model checking 

Our proposal advocates that dependability requirements models 

be probabilistic, and that sound approaches and new tools be de- 

veloped to guide self-adaptive capabilities and guarantee the ful- 

fillment of goals. This is because goals are ultimately fulfilled by 

executable processes, which can fail due to different reasons. As 



Download English Version:

https://daneshyari.com/en/article/4972323

Download Persian Version:

https://daneshyari.com/article/4972323

Daneshyari.com

https://daneshyari.com/en/article/4972323
https://daneshyari.com/article/4972323
https://daneshyari.com

