
ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Information and Software Technology 0 0 0 (2016) 1–21

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Search-based software library recommendation using multi-objective

optimization

Ali Ouni a , b , ∗, Raula Gaikovina Kula a , Marouane Kessentini c , Takashi Ishio a ,
Daniel M. German

d , Katsuro Inoue

a

a Department of Computer Science, IST, Osaka University, Osaka, Japan
b Department of Computer Science and Software Engineering, UAE University, UAE
c Department of Computer and Information Science, University of Michigan, MI, USA
d Department of Computer Science, University of Victoria, Victoria, Canada

a r t i c l e i n f o

Article history:

Received 2 December 2015

Revised 28 October 2016

Accepted 22 November 2016

Available online xxx

Keywords:

Search-based software engineering

Software library

Software reuse

Multi-objective optimization

a b s t r a c t

Context : Software library reuse has significantly increased the productivity of software developers, re-

duced time-to-market and improved software quality and reusability. However, with the growing num-

ber of reusable software libraries in code repositories, finding and adopting a relevant software library

becomes a fastidious and complex task for developers.

Objective : In this paper, we propose a novel approach called LibFinder to prevent missed reuse opportuni-

ties during software maintenance and evolution. The goal is to provide a decision support for developers

to easily find “useful” third-party libraries to the implementation of their software systems.

Method : To this end, we used the non-dominated sorting genetic algorithm (NSGA-II), a multi-objective

search-based algorithm, to find a trade-off between three objectives : 1) maximizing co-usage between

a candidate library and the actual libraries used by a given system, 2) maximizing the semantic simi-

larity between a candidate library and the source code of the system, and 3) minimizing the number of

recommended libraries.

Results : We evaluated our approach on 6083 different libraries from Maven Central super repository that

were used by 32,760 client systems obtained from Github super repository. Our results show that our

approach outperforms three other existing search techniques and a state-of-the art approach, not based

on heuristic search, and succeeds in recommending useful libraries at an accuracy score of 92%, preci-

sion of 51% and recall of 68%, while finding the best trade-off between the three considered objectives.

Furthermore, we evaluate the usefulness of our approach in practice through an empirical study on two

industrial Java systems with developers. Results show that the top 10 recommended libraries was rated

by the original developers with an average of 3.25 out of 5.

Conclusion : This study suggests that (1) library usage history collected from different client systems and

(2) library semantics/content embodied in library identifiers should be balanced together for an efficient

library recommendation technique.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modern software systems build on a significant number of

third-party software libraries to deliver feature-rich and high-

quality software. Several studies have shown that software library

reuse promotes efficient and effective software development. Con-

sequently, library reuse leads to a significant increase in the pro-

∗ Corresponding author.

E-mail address: ouniaali@gmail.com (A. Ouni).

ductivity, reduction in time-to-market, improvement in the over-

all software quality, as well as reducing the inherent testing costs

[1,2] . Reusing mature software modules can benefit from the col-

lective experience of previous users of the module, as many bugs

as well as deficiencies in the documentation have already been dis-

covered [3,4] .

Indeed, it is recognized that replacing legacy code with quality

components and libraries typically reduces the amount of source

code that must be maintained [5] . The benefits of replacing legacy

http://dx.doi.org/10.1016/j.infsof.2016.11.007

0950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: A. Ouni et al., Search-based software library recommendation using multi-objective optimization, Information

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.11.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:ouniaali@gmail.com
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007

2 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

code by external quality software components was best articulated

by Seacord et al. [5] : “replacing functional components may also pro-

vide additional capabilities and improve on such attributes of sys-

tem quality as robustness or performance ”. In fact, replacing legacy

code by third-party libraries has recently attracted much attention

in both academia and industry. One example is the refactoring of

“synchronized” blocks in Java by replacing them with the utility

library java.util.concurrent [6,7] .

Today, software systems utilize online code repositories such as

Maven Central repository 1 to access to a host of reusable Open

Source Software (OSS) libraries. Indeed, reusable software libraries

are often reused multiple times and are therefore proven solutions

that can provide better quality characteristics compared to newly

developed code [8] . Recent empirical studies have found that 93.3%

of modern OSS projects use third-party libraries, with an average

of 28 libraries per project [9] . On the other hand, recent work in-

dicate that developers are still often reinvent the wheel and spend

effort and time, on re-implementing functionality, that could be

saved by reusing mature and well-tested libraries [10,11] .

We conjure two key reasons for this occurrence. First, due to

the magnitude of available libraries we consider that, most of the

time, developers are unaware or overwhelmed by related libraries.

Online sources 2 report that available libraries are growing at an ex-

ponential rate. Hence, searching relevant software libraries can be

a fastidious task for software developers, which would have an im-

pact their productivity. Second, in addition to different reasons of

distrust [12] , developers are wary of the inherent costs and risks

of library incompatibilities [13] associated with integrating new

and unknown libraries into their existing systems. With the motto

‘ if not broke don’t fix ’, systems as a consequence risk outdated li-

braries.

To help developers, most of existing library recommendation

approaches are based on commonly used together library meth-

ods, e.g., API usage patterns, at the method level of granularity

[14–18] . The most related work of recommendation at the library

level of granularity is by Thung et al. [9] . The authors use collab-

orative filtering and association rule mining on historic software

artifacts to determine commonly used libraries without consider-

ing the library content. However, a library usage history-based ap-

proach would not be able to recommend libraries to projects that

only use a small number of libraries or do not use any libraries

at all. Thus, the content of a library is an extremely important as-

set that should be more informative and explicit for an effective

library recommendation method. This approach deal with library

recommendation as a single objective problem based on usage his-

tory. We believe that library recommendation is rather a complex

decision making problem where several considerations should be

balanced. These complex multi-objective decision problems with

competing and conflicting constraints are well suited to Search

Based Software Engineering (SBSE) [19,20] .

To address the library recommendation problem, we introduce

a novel approach called LibFinder based on the following two

heuristics: a candidate library L can be useful for a given system

S if (i) L has been commonly used with one or more libraries

adopted by S , and (ii) L uses identical or similar identifiers, i.e.,

belongs to the same application domain, as S . To this end, we used

the history of library usage as a ‘wisdom of the crowd’ and se-

mantic similarity embodied in library identifiers mined from large

code repositories from the internet. Our multi-objective formula-

tion aims at finding optimal solutions providing the best trade-off

between the three following objectives: 1) maximize co-usage be-

tween a candidate library and the actual libraries used by a given

1 http://search.maven.org .
2 http://www.modulecounts.com , mvnrepository.com .

system, 2) maximize the semantic similarity between a candidate

library’s code and the system’s code, and 3) minimize the total

number of recommended libraries. To this end, we used the pop-

ular multi-objective search-based algorithm the non-dominated

sorting genetic algorithm (NSGA-II) [21] to find the best trade-off

between the three objectives. The complexity of the addressed li-

brary recommendation problem is combinatorial since our formu-

lation consists of assigning libraries to different code fragments

and the search is guided based on the above dependent evaluation

functions.

To evaluate the efficiency of our approach, we used the history

of 32,760 software projects mined from Github, that were clients

for 6083 Maven libraries. The obtained results show that our ap-

proach is efficient in recommending relevant software libraries. We

compare our approach with random search and two other popular

search-based algorithms as well as a state-of-the-art approach. The

statistical analysis shows better performance of our approach with

92% of accuracy, 51% of precision and 68% of recall. Furthermore,

we evaluate the usefulness of our approach in practice through

an empirical study on two industrial Java systems with develop-

ers. Results show that the top 10 recommended libraries was rated

by the original developers of both systems with an average of 3.25

out of 5.

The main contributions of this paper can be summarized as fol-

lows:

1. We propose a new search-based approach called LibFinder , to

detect and recommend third-party libraries that may be rele-

vant to software systems that have already been implemented,

and that it is intended for maintenance and evolution. To the

best of our knowledge, this is the first attempt to use SBSE to

address the library recommendation problem.

2. We collect a rich dataset by (i) mining the usage history, and

(ii) extracting the identifiers of a large set of popular libraries

from Maven Central Repository. The dataset is publicly available

to encourage future research in the field of library recommen-

dation

3 .

3. We present an empirical evaluation of the performance of our

approach using a 10-fold cross validation, along with statisti-

cal analysis of the obtained results. The obtained results show

that our approach outperforms random search and two other

search techniques at a confidence level of 95% and outperforms

a state-of-the-art library recommendation approach [9] with an

accuracy score of 92%, precision score of 51% and recall score

of 68% while finding the best trade-off between the considered

objectives. We present the results of a second empirical study

to evaluate our approach in two industrial systems in real world

setting where the recommended libraries were rated 3.25 out

of 5 on average.

The rest of the paper is organized as follows. Section 2 presents

the necessary background and a motivating example.

Section 3 presents the basic concepts of our approach. Section 4 in-

troduces our search-based approach for library recommendation

LibFinder . Section 5 describes our empirical study and reports

the obtained results, while Section 6 presents the threats to

validity of the study. Section 7 presents the related work. Finally,

Section 8 concludes and presents our future research directions.

2. Background and motivating example

In this section, we first describe the necessary background re-

lated to the proposed approach. We then present an example to

help readers to better understand the motivation for library rec-

ommendation.

3 http://sel.ist.osaka-u.ac.jp/ ∼ali/libRecommendation/ .

Please cite this article as: A. Ouni et al., Search-based software library recommendation using multi-objective optimization, Information

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.11.007

http://search.maven.org
http://www.modulecounts.com
http://mvnrepository.com
http://sel.ist.osaka-u.ac.jp/~ali/libRecommendation/
http://dx.doi.org/10.1016/j.infsof.2016.11.007

Download English Version:

https://daneshyari.com/en/article/4972330

Download Persian Version:

https://daneshyari.com/article/4972330

Daneshyari.com

https://daneshyari.com/en/article/4972330
https://daneshyari.com/article/4972330
https://daneshyari.com

