
ARTICLE IN PRESS 

JID: INFSOF [m5G; November 29, 2016;6:9 ] 

Information and Software Technology 0 0 0 (2016) 1–18 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Cinders: The continuous integration and delivery architecture 

framework 

Daniel Ståhl a , ∗, Jan Bosch 

b 

a Ericsson AB, Datalinjen 3, 581 12 Linköping, Sweden 
b Chalmers University of Technology, Gothenburg, Sweden 

a r t i c l e i n f o 

Article history: 

Received 11 May 2016 

Revised 18 November 2016 

Accepted 22 November 2016 

Available online xxx 

Keywords: 

Cinders 

Software integration 

Software testing 

Continuous integration 

Continuous delivery 

Architecture framework 

a b s t r a c t 

Context: The popular agile practices of continuous integration and delivery have become an essential 

part of the software development process in many companies, yet effective methods and tools to support 

design, description and communication of continuous integration and delivery systems are lacking. 

Objective: The work reported on in this paper addresses that lack by presenting Cinders — an archi- 

tecture framework designed specifically to meet the needs of such systems, influenced both by prominent 

enterprise and software architecture frameworks as well as experiences from continuous integration and 

delivery modeling in industry. 

Method: The state of the art for systematic design and description of continuous integration and deliv- 

ery systems is established through review of literature, whereupon a proposal for an architecture frame- 

work addressing requirements derived from continuous integration and delivery modeling experiences is 

proposed. This framework is subsequently evaluated through interviews and workshops with engineers 

in varying roles in three independent companies. 

Results: Cinders, an architecture framework designed specifically for the purpose of describing con- 

tinuous integration and delivery systems is proposed and confirmed to constitute an improvement over 

previous methods. This work presents software professionals with a demonstrably effective method for 

describing their continuous integration and delivery systems from multiple points of view and supporting 

multiple use-cases, including system design, communication and documentation. 

Conclusion: It is concluded that an architecture framework for the continuous integration and delivery 

domain has value; at the same time potential for further improvement is identified, particularly in the 

area of tool support for data collection as well as for manual modeling. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

This paper addresses the problem of constructing systems for 

rapidly and frequently transforming source code changes into ver- 

ified and deliverable software product revisions with known con- 

tent, known functionality and known quality — through software 

integration and test — in a controlled and methodical way. 

Historically, the problem of transforming lines of source code 

into functioning, verified products running in their target environ- 

ment could be regarded as a question of enterprise architecture: of 

organizational responsibilities and manual processes. With the ad- 

vent and growth of continuous integration [2,8] and delivery [9,14] , 

however, and the automation this brings, this is increasingly be- 

∗ Corresponding author. 

E-mail addresses: daniel.stahl@ericsson.com (D. Ståhl), jan@janbosch.com (J. 

Bosch). 

coming a domain of software engineering: we see ever more so- 

phisticated software systems being constructed, with the purpose 

of compiling, integrating, testing, delivering and deploying other 

software. 

While such systems are generally perceived as adding value 

and increasing the efficiency of the development project, we have 

found in previous work that the exact nature of these benefits is 

highly uncertain and varies from case to case [35] . Furthermore, 

even though there are numerous popular tools that do much of 

the heavy lifting in these integration systems, they only address 

isolated parts of a very large problem domain. In all our indus- 

try case studies [35,36,38,39] we have never found a complete off- 

the-shelf solution for continuous integration. Rather, the integra- 

tion systems we find often use similar tools, but configured differ- 

ently, put to different purposes and integrated with one another in 

varying constellations. Not surprisingly, a review of literature re- 

veals that reported continuous integration systems display a high 

degree of variance [37] . In other words, as a rule, continuous inte- 

http://dx.doi.org/10.1016/j.infsof.2016.11.006 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: D. Ståhl, J. Bosch, Cinders: The continuous integration and delivery architecture framework, Information and 

Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.11.006 

http://dx.doi.org/10.1016/j.infsof.2016.11.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:daniel.stahl@ericsson.com
mailto:jan@janbosch.com
http://dx.doi.org/10.1016/j.infsof.2016.11.006
http://dx.doi.org/10.1016/j.infsof.2016.11.006


2 D. Ståhl, J. Bosch / Information and Software Technology 0 0 0 (2016) 1–18 

ARTICLE IN PRESS 

JID: INFSOF [m5G; November 29, 2016;6:9 ] 

gration and delivery systems are highly customized and purpose- 

built software products in their own right. 

Similarly to the variance in system design, there is little consen- 

sus on the exact definition of continuous integration and delivery, 

particularly as opposed to related terms such as continuous testing, 

continuous release or continuous deployment. For the purposes of 

this paper, we use the term continuous integration and delivery sys- 

tem to mean any system of automated activities performed in or- 

der to transform source code into working and potentially ship- 

pable and deployable products with known quality, content and 

functionality, i.e. including compilation, linking, packaging, testing, 

profiling, documentation generation and much more, serving to en- 

sure that “the software can be released to production at any time”

[9] . In this paper we propose and evaluate a structured and sys- 

tematic approach to the design and description of such systems, 

in order to help software professionals become more effective and 

efficient in a critical domain where significant resources are cur- 

rently being invested. 

The key contribution of this paper is that it provides an archi- 

tectural framework for the design and description of continuous 

integration and delivery systems, thereby addressing the lack of 

systematic engineering approaches to solving a critical problem in 

the software development industry. 

The rest of the paper is structured as follows. The problem 

statement is presented in the following section, discussing in 

greater depth the relevancy of systematic approaches to continu- 

ous integration delivery system design and description. Following 

this, Section 3 provides a background to the work reported from in 

this paper by discussing related tools and methods as well as pre- 

vious work on continuous integration modeling. Section 4 presents 

the employed research method. Then the results are presented in 

Section 5 and evaluated in Section 6 . Threats to validity are dis- 

cussed in Section 7 and the paper is then concluded in Section 8 . 

2. Problem statement 

It is easy to find introductions and tutorials to continuous in- 

tegration — apart from a number of books, a web search for 

‘‘continuous integration tutorial’’ returns well over 

a thousand hits [10] . While a small development project may re- 

quire little work in order to set up a simplistic solution, designing 

a reliable continuous integration and delivery system for a medium 

to large scale project — particularly one satisfying the high levels 

of traceability required in large segments of industry [3,7,26,27] —

is not a small undertaking, however. In addition, all such large 

scale cases studied by us in previous work [35,36,38,39] , while in- 

corporating many of the same open source or commercial tools, 

are ultimately in-house developed bespoke systems. 

The fact that continuous integration is non-trivial to scale has 

been recognized in literature for some time [29,31] . It is also 

known that large numbers of different tools, such as build tools, 

version control systems and test automation frameworks, are in- 

volved in continuous integration and delivery [12,19,44] along with 

numerous stakeholder roles [22] . We have ourselves noted the im- 

portance of considering the continuous integration and delivery 

system’s capacity , in relation to the needs dictated by one’s project 

size, and discussed strategies for handling that [36] . We believe 

that the problems arising from this are further compacted by the 

fact that the companies — despite long experience of developing 

large, highly systematized products on a multinational market —

tend to not approach this area with the same rigorous engineering 

practices as they do their normal product development. Arguably 

because of the emergent nature of the field, there appears to be a 

lowering of standards when developing the systems that ultimately 

produce the products, compared to the development of the prod- 

ucts themselves. This notion is supported by statements made by 

industry professionals interviewed by us in previous work [38] , e.g. 

an integration project manager of a very large software product re- 

lating how they simply don’t approach the problem in a systematic 

way and don’t document what exactly it is they want to achieve. 

In the same vein, a test manager in another company previously 

studied by us explained how he constantly struggles with overlap- 

ping and competing in-house tool development, leading to enor- 

mous waste of resources — a situation unthinkable in the devel- 

opment of the regular product itself — simply because of insuffi- 

cient coordination of development teams and little to no system- 

ization of, in his words, “the continuous integration and delivery 

product”. 

Further evidence of the vast engineering problems involved in 

building large, effective and reliable continuous integration and de- 

livery systems is provided by the effort required. While it is sur- 

prisingly difficult to find studies on capital and operating expen- 

diture of such implementations, one study [24] estimates that a 

small team of developers spent approximately 7% of their effort 

over a hundred day period on “CI process overhead”, although 

this was outweighed by the assumed cost of not having imple- 

mented continuous integration. Our own findings, both as practi- 

tioners and researchers, support this claim; large industry devel- 

opment cases we have been in contact with in recent years tend 

to estimate spending some 10% of their total R&D effort build- 

ing continuous integration and delivery capabilities, with one case 

of approximately 250 engineers estimating 25%. An internal sur- 

vey conducted within a large software company we have pre- 

viously studied further corroborates this. In it, four R&D units 

ranging from approximately 600 to 1200 headcount report con- 

tinuous integration system headcount allocations varying from 5% 

to 7%. 

Consequently we conclude that continuous integration and de- 

livery expenditure in the industry is an important but under- 

researched field, but that there are strong indications that it is 

an area where significant effort is being spent. In addition to this, 

as software professionals ourselves, we witness an increasing inci- 

dence of customers requesting information on their suppliers’ abil- 

ity to continuously deliver and deploy new software, as that ability 

factors into their purchasing decisions. 

The inherent paradox is evident: even though continuous in- 

tegration and delivery capabilities are clearly believed by many in- 

dustry companies — both producers and consumers of software so- 

lutions — to be crucial, and consequently invested heavily in, at the 

same time those same companies are unable or unwilling to ap- 

proach the problem with the same engineering rigor and diligence 

as they do their commercial product development. In summary, we 

find that: 

• Continuous integration and delivery capabilities are regarded as 

increasingly important in the industry. 

• Vast amounts of money and resources are being expended in 

order to build continuous integration and delivery capabilities. 

• Studied large scale continuous integration and delivery systems 

are bespoke in-house developed solutions. 

• Despite its importance and the investments made, the problem 

of constructing effective and efficient integration systems isn’t 

necessarily addressed in a systematic way. 

3. Background 

This section provides context by discussing the background of 

the work reported from in this paper. 

3.1. Continuous integration modeling 

In response to the situation outlined in Section 2 , modeling 

and visualization techniques have been proposed [25,37] and ap- 

Please cite this article as: D. Ståhl, J. Bosch, Cinders: The continuous integration and delivery architecture framework, Information and 

Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.11.006 

http://dx.doi.org/10.1016/j.infsof.2016.11.006


Download English Version:

https://daneshyari.com/en/article/4972331

Download Persian Version:

https://daneshyari.com/article/4972331

Daneshyari.com

https://daneshyari.com/en/article/4972331
https://daneshyari.com/article/4972331
https://daneshyari.com

