
Information and Software Technology 86 (2017) 20–36 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Handling constraints in combinatorial interaction testing in the 

presence of multi objective particle swarm and multithreading 

Bestoun S. Ahmed 

a , b , ∗, Luca M. Gambardella 

a , Wasif Afzal c , Kamal Z. Zamli d 

a Istituto Dalle Molle di Studi sullIntelligenza Artificiale (IDSIA), CH-6928 Manno-Lugano, Switzerland 
b Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic 
c School of Innovation, Design and Engineering, Mlardalen University, Sweden 
d Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, Gambang, Malaysia 

a r t i c l e i n f o 

Article history: 

Received 13 February 2016 

Revised 14 February 2017 

Accepted 14 February 2017 

Available online 20 February 2017 

Keywords: 

Constrained combinatorial interaction 

Multi-objective particle swarm optimisation 

Test generation tools 

Search-based software engineering 

Test case design techniques 

a b s t r a c t 

Context: Combinatorial testing strategies have lately received a lot of attention as a result of their diverse 

applications. In its simple form, a combinatorial strategy can reduce several input parameters (configu- 

rations) of a system into a small set based on their interaction (or combination). In practice, the input 

configurations of software systems are subjected to constraints, especially in case of highly configurable 

systems. To implement this feature within a strategy, many difficulties arise for construction. While there 

are many combinatorial interaction testing strategies nowadays, few of them support constraints. 

Objective: This paper presents a new strategy, to construct combinatorial interaction test suites in the 

presence of constraints. 

Method: The design and algorithms are provided in detail. To overcome the multi-judgement criteria for 

an optimal solution, the multi-objective particle swarm optimisation and multithreading are used. The 

strategy and its associated algorithms are evaluated extensively using different benchmarks and compar- 

isons. 

Results: Our results are promising as the evaluation results showed the efficiency and performance of 

each algorithm in the strategy. The benchmarking results also showed that the strategy can generate 

constrained test suites efficiently as compared to state-of-the-art strategies. 

Conclusion: The proposed strategy can form a new way for constructing of constrained combinatorial 

interaction test suites. The strategy can form a new and effective base for future implementations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the last decade, various studies on combinatorial interaction 

approaches have gained a lot of awareness and several test gener- 

ation approaches were developed. In software engineering, combi- 

natorial interaction testing (CIT) aims to generate minimised test 

suites that manipulate the variables of input parameters based on 

their combination. Each combination could form a specific config- 

uration of the software-under-test (SUT). The goal is to cover all 

possible t -combinations (sometimes called t − tuples ) by an opti- 

mised set (where t is the interaction strength) [1] . This could be 

a difficult task in case of highly configurable systems, which leads 

to combinatorial explosion and non-deterministic polynomial-time 

∗ Corresponding author. Tel.: +420 224 355 752. 

E-mail addresses: albeybes@fel.cvut.cz , bestoon82@gmail.com 

(B.S. Ahmed), luca@idsia.ch (L.M. Gambardella), wasif.afzal@mdh.se (W. Afzal),

kamalz@ump.edu.my (K.Z. Zamli). 

hard (NP-hard) problems [2] . In addition, the problem of con- 

strained interactions has recently appeared [3] . 

Nowadays, software development is shifted from building an 

isolated, product-by-product approach to software product lines 

(SPL) [4] . In addition to the many features this approach provides 

like minimising the cost and market reachability time, it facilitates 

the idea of customisable software products. With this approach, 

there are many customisable features that could be added to or ex- 

tracted from the functionality of a specific software based on the 

needs of the developers or customers. Eclipse represents a well- 

known example of SPL in which many functions and plug-ins (i.e., 

having different f eatures) can be added or extracted from its main 

framework [5] . Evidence showed that most of the faults may re- 

sult due to the interaction among these features [1,6] . Hence, all 

the interactions must be tested carefully. However, in reality, there 

are many constraints among the features. Some features must or 

must not appear with others and they may be included or ex- 

cluded from the test suite during the testing process. CIT strategies 

can tackle these interactions efficiently, however, with ordinary 

http://dx.doi.org/10.1016/j.infsof.2017.02.004 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2017.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.02.004&domain=pdf
mailto:albeybes@fel.cvut.cz
mailto:bestoon82@gmail.com
mailto:luca@idsia.ch
mailto:wasif.afzal@mdh.se
mailto:kamalz@ump.edu.my
http://dx.doi.org/10.1016/j.infsof.2017.02.004


B.S. Ahmed et al. / Information and Software Technology 86 (2017) 20–36 21 

strategies, it is not possible to satisfy all the constraints and they 

may contain some invalid combinations in the final constructed 

test suite. 

There are many approaches to construct CIT test suites in the 

literature. Among those approaches, evidences revealed that the 

use of meta-heuristic algorithms could achieve an optimum or 

near-optimum combinatorial set, covering every possible interac- 

tion of input parameters (or functions) [7,8] . Most recently, dif- 

ferent meta-heuristic algorithms have been adapted to solve this 

problem such as Simulated Annealing (SA) [9] , Genetic Algorithms 

(GA) [10] , Tabu Search (TS) [11] , Ant Colony Algorithm (ACA) [12] , 

Cuckoo Search (CS) [1] , and many other algorithms. Despite the 

wide range of approaches and algorithms used in generating the 

combinatorial interaction set, there is no “universal” strategy that 

can generate optimised sets for all configurations since this prob- 

lem is NP-hard problem [13] . Hence, each strategy could be useful 

for specific kinds of configurations and applications. 

Although different strategies have been developed, the problem 

of search space complexity is still the same. As mentioned earlier, 

the main aim of CIT strategies is to cover entire interactions of in- 

put parameters by using smallest set. Hence, the strategy needs 

to search for a combination that can cover much of those interac- 

tions. To determine the number of interactions covered, the strat- 

egy must search for them among a large number of interactions 

which will definitely consume the program run time as well as 

other resources. It will likewise cause the program to take more 

iteration for searching within the meta-heuristic algorithm. In ad- 

dition to this problem, nowadays SPLs have many features to cus- 

tomise that leads to many input parameters for CIT strategy. The 

problem of generating input parameters combination represents 

another serious problem, given consumption of time and resources. 

This problem appears clearly as input parameters continue to grow 

in size, since generally, most of the algorithms complexities are 

growing alongside the number of parameters. To overcome this 

problem, a special algorithm is needed to be combined with effi- 

cient data structures in order to speed up the generation and sort- 

ing process. In addition to these existing challenges to the imple- 

mented strategies, a few of them can satisfy the constraints in the 

final generated test suite. This will add extra complexity in design- 

ing efficient CIT strategies. 

In our earlier research [1,14,15] , we have examined Particle 

Swarm Optimisation (PSO) within a CIT strategy to generate ordi- 

nary combinatorial test suites. The strategy has been modified and 

implemented also for the same purpose by other researchers re- 

cently [16] . In both cases, PSO has outperformed other strategies 

in different experiments. However, none of these researches are 

suitable for the constrained CIT. Adding this feature to the strategy 

will change the nature of the problem and the search space itself. 

It also changes the fitness function of the optimisation algorithm. 

In addition, the aforementioned problems within those strategies, 

are still not solved properly. 

In order to solve these problems and to cope with the practi- 

cal test generation process, this paper presents a new strategy that 

tries to generate constrained combinatorial interaction test suites 

efficiently and provides a new approach for the design and imple- 

mentation of these strategies. Owing to the nature of constrained 

combinatorial generation, multi-objective PSO is used within the 

strategy. Furthermore, the strategy expands our earlier research 

and gives more practical results depending on the new algorithms 

that we have designed and implemented. 

The rest of this paper is organised as follows. Section 2 illus- 

trates a practical model of the problem as a motivating exam- 

ple, using an SPL case study. Section 3 presents the mathemat- 

ical notations, definitions, and theories behind the CIT and con- 

strained CIT. Section 4 summarises recent related works and re- 

views the existing literature. Section 5 reviews multi-objective PSO 

Fig. 1. GPL specification GUI. 

and discusses its features for this research. Section 6 discusses the 

design concepts of the strategy and its implementation. The sec- 

tion also illustrates how we adapt different algorithms for con- 

strained CIT. Section 7 contains the results of different stages of the 

evaluation process. Section 8 discusses the experimental results. 

Section 9 shows some threats to validity in this research. Finally, 

Section 10 concludes the paper. 

2. Motivating example 

To illustrate the constrained combinatorial interaction in prac- 

tice, we adopt a real canonical example from Software Product 

Lines (SPL) called Graph Product Line (GPL) [17] . GPL is a config- 

urable system in which the combinations lead to a product with 

basic graph algorithms and graph types [18] . It is implemented in 

a way that all the applications that come out as a product do not 

have the same combination of features. Fig. 1 shows a GUI with all 

specifications of the GPL. 

As can be seen in Fig. 1 , the produced graph type could be 

Directed or Undirected, and the edges of the graph could be 

Weighted or Unweighted (i.e., non-negative numbers). In addition 

to these two features, the graph needs at least one search algo- 

rithm which can be a breadth-first search (BFS) or a depth-first 

search (DFS). Finally, the graph needs one or more of the follow- 

ing algorithms: Vertex Numbering (Number), Connected Compo- 

nents (Connected), Strongly Connected Components (Strongly Con- 

nected), Cycle Checking (Cycle), Minimum Spanning Tree (MST 

Prim, MST Kruskal), and Single-Source Shortest Path (Shortest). 

Fig. 2 shows a feature model for these graph features. 

The feature model in Fig. 2 shows a standard model of the illus- 

trated features in Fig. 1 . The graph illustrates that the product in 

the root feature (GPL) has four core functionalities and one driver 

program (Driver). The driver chooses the example from Benchmark 

feature to apply the graph Algorithms to. Each of the function- 

alities (Graph Type) and (Search) have two alternative features. 

Finally, one of the following algorithms must be followed with 

the product: connected components (CC), numbering of nodes in 

the traversal order (Num), cycle checking (Cycle), strongly con- 

nected components (SCC), shortest path (Shortest), Kruskals algo- 

rithm (Kruskal), or minimum spanning trees with Prims algorithm 

(Prim). 

To apply the CIT method on this feature model, the parameters 

and values must first be specified. Here, the four functions become 

parameters and their features become values for these parameters. 

Table 1 illustrates this. 

The arrangement in Table 1 shows clearly that there are 2 ×
2 × 2 × 7 possible feature configurations, which equals 57 possi- 

bilities. We can reduce this exhaustive test suite by taking an in- 

teraction of the features among the functions. In addition to the 

reduction advantage, this can tackle the faults caused by the inter- 

action of these features. This idea is supported by much evidence 

in the literature in which it was shown that faults are likely to oc- 



Download English Version:

https://daneshyari.com/en/article/4972338

Download Persian Version:

https://daneshyari.com/article/4972338

Daneshyari.com

https://daneshyari.com/en/article/4972338
https://daneshyari.com/article/4972338
https://daneshyari.com

