
Information and Software Technology 86 (2017) 37–53 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Towards an understanding of change types in bug fixing code 

Yangyang Zhao 

a , Hareton Leung b , Yibiao Yang a , Yuming Zhou a , ∗, Baowen Xu a 

a State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China 
b Department of Computing, Hong Kong Polytechnic University, Hong Kong 

a r t i c l e i n f o 

Article history: 

Received 29 June 2016 

Revised 11 February 2017 

Accepted 13 February 2017 

Available online 20 February 2017 

Keywords: 

Change 

Bug fixing code 

Empirical study 

Understanding 

Software quality 

a b s t r a c t 

Context: As developing high quality software becomes increasingly challenging because of the explosive 

growth of scale and complexity, bugs become inevitable in software systems. The knowledge of bugs will 

naturally guide software development and hence improve software quality. As changes in bug fixing code 

provide essential insights into the original bugs, analyzing change types is an intuitive and effective way 

to understand the characteristics of bugs. 

Objective: In this work, we conduct a thorough empirical study to investigate the characteristics of 

change types in bug fixing code. 

Method: We first propose a new change classification scheme with 5 change types and 9 change subtypes . 

We then develop an automatic classification tool CTforC to categorize changes. To gain deeper insights 

into change types, we perform our empirical study based on three questions from three perspectives, i.e. 

across project, across domain and across version. 

Results: Based on 17 versions of 11 systems with thousands of faulty functions, we find that: (1) across 

project: the frequencies of change subtypes are significantly similar across most studied projects; inter- 

face related code changes are the most frequent bug-fixing changes (74.6% on average); most of faulty 

functions (65.2% on average) in studied projects are finally fixed by only one or two change subtypes; 

function call statements are likely to be changed together with assignment statements or branch state- 

ments; (2) across domain: the frequencies of change subtypes share similar trends across studied do- 

mains; changes on function call, assignment, and branch statements are often the three most frequent 

changes in studied domains; and (3) across version: change subtypes occur with similar frequencies 

across studied versions, and the most common subtype pairs tend to be same. 

Conclusion: Our experimental results improve the understanding of changes in bug fixing code and hence 

the understanding of the characteristics of bugs. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Motivation 

With the increasing size and complexity of software systems, 

bugs become inevitable in software development. Consequently, to 

enhance software quality, it is essential that bugs be understood 

and fixed as early as possible. As bugs are usually caused by spe- 

cific issues and involve fixes in the related source code, the types 

of bugs highly correlate with the types of source code changes for 

bug fixing. For example, bugs caused by data issues are naturally 

fixed by modifying data-related code. Similarly, bugs manifested 

by interface errors are usually fixed by correcting interface-related 

code. In other words, changes in bug fixing code provide essential 

∗ Corresponding author. 

E-mail address: cs.zhou.yuming@gmail.com (Y. Zhou). 

insights into the original bugs. Therefore, analyzing change types 

in bug fixing code should be an intuitive and effective way to un- 

derstand the characteristics of bugs. 

The study on changes in bug fixes could enable practitioners 

to better understand the general characteristics like the nature of 

changes, the most common kind of change types, and the frequen- 

cies of change types across versions, projects, or domains. Since 

bug-fixing change types are associated with the specific kinds of 

source code that are faulty [7–9] , the most common change types 

indicate which kinds of code are most likely to be faulty. When 

developing a new software project, this knowledge could guide de- 

velopers to pay more attention to the statements with the high- 

est chance of being faulty. In particular, if the frequencies of bug- 

fixing change types are found similar across versions, projects, or 

domains, developers could learn from the previous bug fixing ac- 

tivities and avoid making similar mistakes again. Besides, when a 

code bug occurs, this knowledge can also guide developers to pri- 

oritize source code to be reviewed, debugged, or tested. 

http://dx.doi.org/10.1016/j.infsof.2017.02.003 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2017.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.02.003&domain=pdf
mailto:cs.zhou.yuming@gmail.com
http://dx.doi.org/10.1016/j.infsof.2017.02.003


38 Y. Zhao et al. / Information and Software Technology 86 (2017) 37–53 

Despite the above benefits, little effort has been devoted to 

thoroughly investigate changes in bug fixing code with a broad 

range of projects, mainly due to the following challenges: (1) lack 

of adequate bug-fixing data. To draw meaningful conclusion, it 

is necessary to collect a large number of bug fixes for empirical 

study. However, as many projects did not provide adequate public 

history data for analysis, it tends to be difficult to identify bug- 

fixing changes in these projects; (2) lack of a well-accepted tax- 

onomy for bug fixing changes. There have been a number of stud- 

ies on categorizing bugs, such as cause-driven or document-driven 

fault classification [1–3] , and fault trigger based classification [4,5] . 

However, most of them are not associated with source code, thus 

offering little help on code review; and (3) lack of automatic tool 

support. Manual change categorization is subjective and unreliable. 

If taxonomies do not provide concrete guidelines on classification, 

a change is likely to be categorized differently by different prac- 

titioners based on their own understanding and background. Be- 

sides, manual change categorization is time-consuming, thus it is 

infeasible to study a broad range of systems. Consequently, to com- 

prehensively investigate bug fixing changes, it is necessary to de- 

velop automatic tools to overcome the problems of manual catego- 

rization. 

As a result, the primary motivation of this study is to overcome 

the above challenges and perform a thorough investigation with a 

relatively large number of projects to improve the understanding 

on change types in bug fixing code. 

1.2. Contributions 

As the change types in bug fixing code are essential reflec- 

tions of the original kinds of bugs, we attempt to study bugs from 

the view of fine-grained code changes in the bug fixing process. 

To classify code changes for faulty functions, we develop a taxon- 

omy of change types : Data, Computation, Interface, Logic/control, 

and Others, which are language independent. To support a detailed 

analysis in the follow-up experiments, we further subdivide the 

five change categories into 9 change subtypes, i.e. changes on data 

declaration or initialization statements (CDDI), changes on assign- 

ment statements (CAS), changes on function declaration/definition 

statements (CFDD), changes on function call statements (CFC), 

changes on loop statements (CLS), changes on branch statements 

(CBS), changes on return/goto statements (CRGS), changes on pre- 

processor directives (CPD), and other changes (CO). 

In this study, we study the code change types based on projects 

developed in C language. The primary reasons are that: (1) there is 

no previous work devoted to studying the bug fixing code changes 

in these systems; and (2) there is currently no automatic change 

type classification tools for C language (to the best of our knowl- 

edge). We develop an automatic tool CTforC based on Coccinelle 

[12,13] . CTforC has three main components, i.e. change location, 

change pattern detection, and change type classification. It can au- 

tomatically identify faulty functions, match changed code, and fi- 

nally output change types. The evaluation results show that CTforC 

can achieve accuracies consistently above 98% when compared to 

manual change classification. 

With the defined change types, firstly, we study 11 well- 

known open-source systems to explore the general characteristics 

of change types across projects; Secondly, we investigate 3 do- 

mains, i.e GNU, Apache, and Tool, to examine whether the fre- 

quencies of change subtypes are domain specific; Finally, we ex- 

amine two systems with multiple versions (i.e. Apr versions and 

Libav versions), to study whether change subtypes occur with sim- 

ilar frequencies in different versions of the same system. 

Based on 17 versions of 11 C systems with thousands of faulty 

functions, we have the following key findings. 

• Across projects. There are general characteristics of change 

types across studied projects. More specifically, interface related 

code changes are usually the most frequent bug-fixing changes, 

accounting for 74.6% on average (Finding1); The frequencies 

of change types are significantly similar across most studied 

systems (Finding 2); A significant number of faulty functions 

(65.2% on average) are fixed by only one or two change types 

(Finding 3); Besides, function call statements are very likely 

to be changed together with assignment statements or branch 

statements in most studied systems (Finding 4). 

• Across domains. The frequencies of change subtypes do not 

vary substantially, but share significantly similar trends across 

studied domains (Finding 6), and changes on function-call 

statements are the most commonly observed changes regard- 

less of the domain of the studied projects (Finding 5). 

• Across versions. The frequencies of change subtypes are simi- 

lar across different versions of the studied system (Finding 7), 

and the most common subtype pairs (i.e. a pair of change sub- 

types which occur together in the same function) are always 

the same across studied versions (Finding 8). 

The above findings provide a comprehensive view on the char- 

acteristics of change types, improve the visualization of how bugs 

were repaired, and gain deeper insights into the nature of bugs 

from source code perspective. We believe these results are valu- 

able to guide both software development and future researches in 

this direction. 

Paper outline: The remainder of the paper is organized as fol- 

lows. Section 2 describes the fundamental concepts, our proposed 

change classification scheme, and the classification methods for 

special cases. Section 3 presents the experimental methods of our 

study, including the research questions, studied systems, and our 

automatic classification tool. Section 4 reports the evaluation re- 

sults of our automatic tool and presents experimental results in 

detail for each research question. Section 5 analyzes the threats to 

validity of our study, followed by the introduction of related work 

in Section 6 . Finally, in Section 7 , we give the conclusions and out- 

line the directions for future work. 

2. Change types 

In this section, we first introduce the concepts used in our 

study. Then, we propose a new classification scheme and introduce 

each change type in detail. Finally, we illustrate the classification 

methods for special cases. 

2.1. Concepts 

For better understanding, it is necessary to first define the spe- 

cial concepts used in our study. It is noteworthy that, in this study, 

we use “bug”, “defect”, and “fault” interchangeably, since “faults”

and “defects” are synonyms of bugs [6] . 

• Bug: errors in a software system that causes it to produce 

an incorrect or unexpected result, or to behave in unintended 

ways. 

• Bug version: a released version with bugs. 

• Fix version: a subsequent version of the bug version, which is 

released purely for fixing bugs. 

• Faulty function: a function in the bug version which is changed 

in its corresponding fix version. 

• Fixing Code Change: code change between the bug version and 

fix version, like adding, deleting, modifying, or moving source 

code. (Note that, the fixing code changes are occasionally ab- 

breviated to changes in this study) 

• Change type: the type of a fixing code change. 



Download English Version:

https://daneshyari.com/en/article/4972339

Download Persian Version:

https://daneshyari.com/article/4972339

Daneshyari.com

https://daneshyari.com/en/article/4972339
https://daneshyari.com/article/4972339
https://daneshyari.com

