
Information and Software Technology 86 (2017) 87–100 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Systematic literature review on the impacts of agile release 

engineering practices 

Teemu Karvonen 

∗, Woubshet Behutiye , Markku Oivo , Pasi Kuvaja 

University of Oulu, Pentti Kaiteran Katu 1, 90014, Finland 

a r t i c l e i n f o 

Article history: 

Received 23 May 2016 

Revised 12 January 2017 

Accepted 24 January 2017 

Available online 25 January 2017 

Keywords: 

Release engineering 

Agile 

Continuous integration 

Rapid release 

Continuous delivery 

Continuous deployment 

a b s t r a c t 

Context: Agile release engineering (ARE) practices are designed to deliver software faster and cheaper to 

end users; hence, claims of such impacts should be validated by rigorous and relevant empirical studies. 

Objective: The study objective was to analyze both direct and indirect impacts of ARE practices as well 

as to determine how they have been empirically studied. 

Method: The study applied the systematic literature review research method. ARE practices were iden- 

tified in empirical studies by searching articles for “rapid release,” “continuous integration,” “continuous 

delivery,” and “continuous deployment.” We systematically analyzed 619 articles and selected 71 primary 

studies for deeper investigation. The impacts of ARE practices were analyzed from three viewpoints: im- 

pacts associated with adoption of the practice, prevalence of the practice, and success of software devel- 

opment. 

Results: The results indicated that ARE practices can create shorter lead times and better communication 

within and between development teams. However, challenges and drawbacks were also found in change 

management, software quality assurance, and stakeholder acceptance. The analysis revealed that 33 out 

of 71 primary studies were casual experience reports that had neither an explicit research method nor a 

data collection approach specified, and 23 out of 38 empirical studies applied qualitative methods, such 

as interviews, among practitioners. Additionally, 12 studies applied quantitative methods, such as mining 

of software repositories. Only three empirical studies combined these research approaches. 

Conclusion: ARE practices can contribute to improved efficiency of the development process. Moreover, 

release stakeholders can develop a better understanding of the software project’s status. Future empirical 

studies should consider the comprehensive reporting of the context and how the practice is implemented 

instead of merely referring to usage of the practice. In addition, different stakeholder points of view, such 

as customer perceptions regarding ARE practices, still clearly require further research. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In software development, fast, incremental deliveries involve 

lightweight, efficient practices for continuous release planning 

[1] and release engineering [2,3] . This paper focuses on engineer- 

ing by synthesizing empirical studies for agile release engineering 

(ARE) practices. To the best of our knowledge, the concept of ARE 

has not been used before in other scientific papers. We use it in 

this paper to map the research topic and to incorporate the in- 

vestigated release engineering practices that are involved in a “re- 

lease engineering pipeline” [3] . Hence, by ARE practices, we mean 

∗ Corresponding author. 

E-mail addresses: teemu.3.karvonen@oulu.fi (T. Karvonen), 

woubshet.behutiye@oulu.fi (W. Behutiye), markku.oivo@oulu.fi (M. Oivo), 

pasi.kuvaja@oulu.fi (P. Kuvaja). 

contemporary software integration, testing, deployment and release 

practices that are often applied in modern release engineering [3] . 

Many of these practices originate from agile software develop- 

ment methodologies such as extreme programming (XP) [4] . From 

the research point of view, ARE practices derive from the theo- 

ries of agile and lean software developmen t [5] , release engineer- 

ing [2,3,6] and continuous software engineering [7,8] research dis- 

ciplines. According to Adams et al. [6] , release engineering “deals 

with all activities in between regular development and delivery 

of a software product to the end user, i.e., integration, build, test 

execution, packaging and delivery of software.” Continuous soft- 

ware engineering is an emerging subtopic in software engineering 

(SE) that is focused on continuous experimentation, innovation and 

the elimination of discontinuities within and between the develop- 

mental, operational and business strategy functions. Fitzgerald and 

Stol [8] associate concepts in continuous software engineering with 

concepts of classic “lean thinking” [9] such as “value and waste,”

http://dx.doi.org/10.1016/j.infsof.2017.01.009 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2017.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.01.009&domain=pdf
mailto:teemu.3.karvonen@oulu.fi
mailto:woubshet.behutiye@oulu.fi
mailto:markku.oivo@oulu.fi
mailto:pasi.kuvaja@oulu.fi
http://dx.doi.org/10.1016/j.infsof.2017.01.009


88 T. Karvonen et al. / Information and Software Technology 86 (2017) 87–100 

“flow and batch size,” “autonomation and building-in quality” and 

“Kaizen and continuous improvement.”

Modern ARE practices are supposed to aid in delivering soft- 

ware faster and cheaper to end users; hence, claims of such im- 

pacts should be validated by rigorous and relevant empirical stud- 

ies. In this systematic review, the objective is to understand the 

direct and indirect impacts of ARE practices. By investigating the 

direct and indirect impacts we emphasize the notion that “im- 

pacts may be desired already according to the explicit method 

rationale(s), or they may be unexpected, sometimes even un- 

wanted[10].” In addition, we sought to evaluate primary studies to 

understand how the impacts of ARE practices have been investi- 

gated in empirical studies. The research questions are: 

RQ1: What are the direct and indirect impacts of ARE practices? 

We break down the main question into three sub-questions as 

follows: 

RQ1a: What are the impacts associated with adoption of ARE 

practices? 

RQ1b: What is the prevalence of ARE practices? 

RQ1c: What are the impacts of ARE practices on the success of 

SW development? 

In addition, we define a second main research question to un- 

derstand how these impacts have been investigated: 

RQ2: How have ARE practices been investigated in empirical 

studies? 

In this study, we systematically searched and analyzed empir- 

ical studies investigating 1) continuous integration (CI) [11,12] , 2) 

continuous delivery (CD) [12] , 3) rapid release (RR) [13] and 4) con- 

tinuous deployment (CD2) [11,12] . We analyzed and clustered stud- 

ies by topic and research approach, and outlined a checklist for 

analyzing software development capabilities for CD2 in the con- 

text of software-intensive products. We applied a systematic liter- 

ature review (SLR) [14] method that allowed us to critically com- 

pare, evaluate and synthesize the primary studies. Our main se- 

lection criterion for the primary studies was that they were con- 

ducted in real software development contexts. Literature reviews, 

mapping studies, opinion papers and small-scale experiments with 

students are not included in our analysis. To the best of our knowl- 

edge, a systematic synthesis focusing on the impacts of ARE prac- 

tices has not previously been undertaken, although some of the 

practices have been synthesized either separately or from a differ- 

ent research question point of view, as we explain in more detail 

in the following section. With this systematic review, we aim to 

provide a reliable overview of the current state of existing empir- 

ical studies for ARE practices that may help in terms of scoping 

and planning future studies. Our study also helps practitioners to 

better understand the impacts and capabilities associated with ARE 

practices. Finally, this paper aims to contribute to the theorizing on 

software development practices [10] for ARE. The concepts used in 

this paper (i.e., learning, practice, development context, rationale, im- 

pact and theory ) conform to definitions used for the Coat Hanger 

model [10] . 

2. Background 

ARE practices aim to support the agile principle of “early and 

continuous delivery of valuable software [15] .” Early and contin- 

uous deliveries allow mechanisms for fast feedback and trans- 

parency of the development process, allowing stakeholders to con- 

tinuously review and evaluate the state of the system under de- 

velopment and, if needed, to make adjustments to the priority 

and content requirements accordingly. CI practice originated from 

the agile XP methodology. Beck and Andres [4] summarizes CI as 

follows: “New code is integrated with the current system after 

no more than a few hours. When integrating, the whole system 

is built from scratch and all tests must pass or the changes are 

discarded.” CI is often characterized by development conventions 

and tools for the automation of the build and test activities [11] ; 

XP, however, goes beyond tools and emphasizes values and princi- 

ples [4] that rationalize [10] the usage of CI practice. Development 

team members must prioritize development activities to “commit 

changes frequently” and “fix broken builds immediately [4] .” Con- 

sequently, “all tests and inspections must pass” (i.e., with zero tol- 

erance for regression and failed test cases) [4] . 

It is safe to assume that the impacts of CI practice depend on 

the actual implementation of the practice as well as the stage of 

assimilating the practice the organization is in. In their literature 

review, Eck et al. [16] investigated CI practice from the assimila- 

tion point of view. They identified 14 distinct organizational impli- 

cations of CI in three assimilation stages: 

1. Acceptance: devising an assimilation path, overcoming the 

initial learning phase, dealing with test failures right away 

and introducing CI for complex systems. 

2. Routinization: institutionalizing CI, clarifying the division of 

labor, CI and distributed development, mastering test-driven 

development and providing CI at project start. 

3. Infusion: CI assimilation metrics, devising a branching strat- 

egy, decreasing test result latency, fostering customer in- 

volvement in testing and extending CI beyond the source 

code. 

Another related literature review by Ståhl and Bosch [17] fo- 

cused on technical aspects of the implementation of CI practice. 

Moreover, they analyzed variations in the interpretation and im- 

plementation of CI practice. They concluded that CI practice in- 

terpretations and implementations are different from case to case. 

For example, integration and test flow frequency vary in different 

contexts. Meanwhile, Päivärinta and Smolander [10] state that pre- 

defined practices or methods in theory need to be distinguished 

from the contextual practice descriptions of what actually happens. 

Subsequently identified CI impacts, as well as other ARE practices 

in our systematic review, may not apply to practice in theory but 

rather to different variants (context-specific embodiments) of the 

practice, which may evolve dynamically over time. Ståhl and Bosch 

[17] also state that “in order to make a meaningful comparison of 

software development projects, simply stating that they use con- 

tinuous integration is insufficient information as we instead need 

to ask ourselves what kind of continuous integration is used.” To 

better understand CI practice variations, Ståhl and Bosch intro- 

duced a descriptive model that allows for the visualization of CI 

flow for a better understanding of context-specific variation points. 

Nevertheless, understanding technical implementations of CI prac- 

tice alone may still not provide enough information to understand 

the causalities between CI practice and its impacts, as many other 

variables may be related to the adoption of its values and princi- 

ples that may also either increase or diminish the impacts. 

Within CI practice, multiple levels of integration may exist and 

changes may also be deployed in different kinds of environments. 

For example, the deployment environment could be a purely ex- 

perimental test environment, a production-like environment or the 

actual production environment. CD practice is often considered to 

extend CI practice. Humble and Farley [12] introduce CD as a prac- 

tice to automate the software delivery process for production pur- 

poses. CD promotes the idea of delivering software “at will,” i.e., 

the delivery can occur at any point in time with very little manual 

labor required. CD is often used interchangeably or as a synonym 

for CD2 practice; however, there are also accounts regarding how 

these practices differ. According to Fitzgerald and Stol [8] , “con- 

tinuous delivery is a prerequisite for continuous deployment, but 



Download	English	Version:

https://daneshyari.com/en/article/4972342

Download	Persian	Version:

https://daneshyari.com/article/4972342

Daneshyari.com

https://daneshyari.com/en/article/4972342
https://daneshyari.com/article/4972342
https://daneshyari.com/

