
ARTICLE IN PRESS 

JID: INFSOF [m5G; December 16, 2016;6:38 ] 

Information and Software Technology 0 0 0 (2016) 1–18 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Software product lines traceability: A systematic mapping study 

Tassio Vale 

a , b , c , ∗, Eduardo Santana de Almeida 

b , c , Vander Alves d , Uirá Kulesza 

e , Nan Niu 

f , 
Ricardo de Lima 

d 

a Center of Exact Sciences and Technology, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil 
b Computer Science Department, Federal University of Bahia, Salvador, BA, Brazil 
c RiSE - Reuse in Software Engineering, Salvador, BA, Brazil 
d Computer Science Department, University of Brasilia, Brasilia, DF, Brazil 
e Computer Science Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil 
f Department of EECS, University of Cincinnati, Cincinnati, OH, United States 

a r t i c l e i n f o 

Article history: 

Received 8 March 2016 

Revised 10 December 2016 

Accepted 13 December 2016 

Available online xxx 

Keywords: 

Systematic mapping study 

Software product lines 

Software and systems traceability 

Software reuse 

a b s t r a c t 

Context: Traceability in Software Product Lines (SPL) is the ability to interrelate software engineering 

artifacts through required links to answer specific questions related to the families of products and un- 

derlying development processes. Despite the existence of studies to map out available evidence on trace- 

ability for single systems development, there is a lack of understanding on common strategies, activities, 

artifacts, and research gaps for SPL traceability. 

Objective: This paper analyzes 62 studies dating from 2001 to 2015 and discusses seven aspects of SPL 

traceability: main goals, strategies, application domains, research intensity, research challenges, rigor, and 

industrial relevance. In addition to the analysis, this paper also synthesizes the available evidence, iden- 

tifies open issues and points out areas calling for further research. 

Method: To gather evidence, we defined a mapping study process adapted from existing guidelines. 

Driven by a set of research questions, this process comprises three major phases: planning, conducting, 

and documenting the review. 

Results: This work provides a structured understanding of SPL traceability, indicating areas for further 

research. The lack of evidence regarding the application of research methods indicates the need for more 

rigorous SPL traceability studies with better description of context, study design, and limitations. For 

practitioners, although most identified studies have low industrial relevance, a few of them have high 

relevance and thus could provide some decision making support for application of SPL traceability in 

practice. 

Conclusions: This work concludes that SPL traceability is maturing and pinpoints areas where further 

investigation should be performed. As future work, we intend to improve the comparison between trace- 

ability proposals for SPL and single-system development. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Software Product Line (SPL) engineering is a paradigm to de- 

velop variant-rich systems at lower costs, in shorter time, and 

with higher quality [1] . To achieve such benefits, two develop- 

ment phases take place: domain engineering, focusing on gener- 

ating assets that systematically incorporate domain commonalities 

and variabilities; and application engineering, which instantiates 

∗ Corresponding author at: Center of Exact Sciences and Technology, Federal Uni- 

versity of Recôncavo da Bahia, Cruz das Almas, BA, Brazil. 

E-mail address: tassio.vale@ufrb.edu.br (T. Vale). 

domain engineering assets into specific software products to ad- 

dress customers’ needs. 

One important aspect of software engineering is software trace- 

ability. In the SPL area, it refers to the interrelation of software ar- 

tifacts through required links to answer specific questions related 

to the families of products and the underlying development pro- 

cesses. 

Tracing in SPLs becomes even more complex when compared 

to single system development, since there are additional issues 

emerging from variability when applying systematic traceability. 

For instance, Jirapanthong and Zisman [2] discuss the following 

difficulties for achieving traceability in SPL: (i) the large num- 

http://dx.doi.org/10.1016/j.infsof.2016.12.004 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: T. Vale et al., Software product lines traceability: A systematic mapping study, Information and Software 

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.12.004 

http://dx.doi.org/10.1016/j.infsof.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:tassio.vale@ufrb.edu.br
http://dx.doi.org/10.1016/j.infsof.2016.12.004
http://dx.doi.org/10.1016/j.infsof.2016.12.004


2 T. Vale et al. / Information and Software Technology 0 0 0 (2016) 1–18 

ARTICLE IN PRESS 

JID: INFSOF [m5G; December 16, 2016;6:38 ] 

ber and heterogeneity of documents when compared to traditional 

software development; (ii) the need to have a basic understand- 

ing of variability consequences under all development phases; and 

(iii) the need to establish relationships between product members 

(of the family) and the product line architecture, or relationships 

between the product members themselves. 

Since the last decade, researchers have been investigating trace- 

ability and a considerable number of proposals are available in the 

literature. Despite the existence of studies to map out available ev- 

idence on traceability for single systems development [3] , there is 

a lack of understanding on common strategies, activities, artifacts, 

and research gaps for SPL traceability. Therefore, a literature re- 

view is important to investigate the state-of-the-art and identify 

research topics that researchers and practitioners should systemat- 

ically address. 

Accordingly, this systematic mapping study aims to synthesize 

existing research related to systematic traceability in the SPL field, 

which we refer to as SPL traceability. In particular, we identify 

common practices, research trends, open issues, and research top- 

ics for improvement. In addition, we categorize the primary stud- 

ies’ evidence according to a well-defined scheme and emerging 

knowledge structures. Further, the study balances the relevance of 

research by analyzing the potential industrial impact in terms of 

rigor and industrial relevance. 

As a result, this work provides a structured understanding of 

SPL traceability and identifies possibilities for future research. In 

addition, the unveiled lack of evidence regarding the application of 

research methods indicates the need for more rigorous SPL trace- 

ability studies with better description of context, study design, 

and limitations. It also reinforces that more data about existing 

methods should be collected. Furthermore, for practitioners, al- 

though most identified studies have low industrial relevance, a few 

of them have high relevance and thus could provide some deci- 

sion making support for application of SPL traceability in practice. 

Nonetheless, future evaluation of SPL traceability should be car- 

ried out by more well-described studies conducted with industrial- 

strength applications having practitioners as subjects. 

The remainder of this paper is organized as follows: 

Section 2 presents the background on SPL and software trace- 

ability research areas; Section 3 describes the mapping study 

process that guides our research; Section 4 presents the results 

from the analysis and synthesis activities; Section 5 discusses 

the main findings of this work; Section 6 presents threats to the 

validity of this work; Section 7 argues on the related work; and 

Section 8 presents the concluding remarks. 

2. Background 

2.1. Software product lines 

Software product line engineering addresses the development 

of software system families for a specific market segment [4] . A 

system family is a set of programs that share common function- 

alities and maintain specific functionalities that vary according to 

specific systems [5] . 

Several benefits are expected through the adoption of SPL en- 

gineering [4] , such as: cost reduction, the improvement of product 

quality and development productivity, and shortened time to mar- 

ket. A software product line is usually modeled, designed and im- 

plemented in terms of common and variable features [6] , which 

are system properties or functionalities relevant to stakeholders. 

They are used to capture commonalities or discriminate among 

systems in SPLs. 

The SPL development is typically organized in [1] : (i) domain 

engineering – that focuses on the development of common arti- 

facts, variation points and variants of the SPL products at the re- 

quirements, architecture, code and testing levels; and (ii) applica- 

tion engineering – that reuses the artifacts produced during do- 

main engineering to instantiate different SPL products. 

Considering the high upfront investment associated to the de- 

velopment of a SPL from scratch, alternative SPL adoption strate- 

gies have been proposed and used in practice. Krueger [7] dis- 

cusses two alternative adoption strategies to the traditional SPL de- 

velopment from scratch using domain and application engineering: 

extractive strategy – that advocates the SPL development through 

the extraction and isolation of common and variable features from 

existing systems to derive an initial version of the SPL; and reactive 

strategy – motivates the incremental development of SPLs where 

initially only a few products are considered; when new require- 

ments and/or products need to be addressed, the common and 

variable artifacts of the SPL are incrementally extended. 

2.2. Software and systems traceability 

Traceability in software engineering has been addressed since 

the NATO conference, in 1968. Over the years, commercial tools 

were developed and applied in several domains (aviation, health- 

care, etc.) increasing the research activity in this area, moving 

from manual to semi-automated and automated traceability strate- 

gies [3] . Despite the growing interest and consequently the higher 

number of proposals, this area still remains challenging. 

Software and systems traceability is the ability to interre- 

late software engineering artifacts, maintaining the required links 

over time, and such information can answer questions about both 

the software product and its development process [8] . Systematic 

traceability eases communication between stakeholders and allows 

the dissemination of feedback to architects and designers about 

the current state of the development. More specifically, the re- 

sulting trace information can be used for impact analysis for es- 

timating change effort, ensuring sufficient test coverage, support- 

ing safety case or some other third party certification, identifying 

potential candidates for reuse, tracking project progress, or recon- 

structing earlier decisions to avoid rework. 

Current research addresses a set of the traceability issues for all 

software traceability process phases. For the planning and manage- 

ment phases, they focus on understanding stakeholders’ needs, de- 

veloping techniques to support traceability that fits specific needs 

of a project. The creation and maintenance of traces explore trace 

creation, trace maintenance, and trace integrity. Finally, the use of 

traces aims to access, query and visualize trace data [8] . 

Realizing traceability involves establishing and using traces, 

which are strictly related to trace artifacts and trace links [3] . Trace 

artifact represents any piece of data amenable to tracing, which 

could vary in terms of granularity (e.g. architectural module, source 

code fragment, etc.). The element that enables tracing is the trace 

link , an association forged between two trace artifacts. Such links 

have an intrinsic directionality, emerging from the source artifact 

to the target artifact (e.g., the architectural module guides the data 

flow output of the source code fragment). Depending on the im- 

plementation, trace links could be bi-directional by including the 

reverse direction of the association. According to [3] , we can refer 

to trace as the “complete triplet of trace elements that enable the 

juxtaposition of two pieces of data: the source artifact, the target 

artifact and the trace link”. This terminology is used throughout 

this paper. 

Trace links can be used to analyze how changes applied to 

existing artifacts might affect other artifacts at the same or dif- 

ferent levels of abstraction. Several trace link classifications have 

been proposed by the community. For instance, Lindval and San- 

dah [9] define the concept of vertical and horizontal traceability to 

distinguish between trace links that refer to the same model or to 

different models, respectively. 

Please cite this article as: T. Vale et al., Software product lines traceability: A systematic mapping study, Information and Software 

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.12.004 

http://dx.doi.org/10.1016/j.infsof.2016.12.004


Download English Version:

https://daneshyari.com/en/article/4972347

Download Persian Version:

https://daneshyari.com/article/4972347

Daneshyari.com

https://daneshyari.com/en/article/4972347
https://daneshyari.com/article/4972347
https://daneshyari.com

