
ARTICLE IN PRESS
JID: INFSOF [m5G;February 16, 2016;9:37]

Information and Software Technology 000 (2016) 1–13

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A novel use of equivalent mutants for static anomaly detection in

software artifacts

Paolo Arcaini a,∗, Angelo Gargantini b, Elvinia Riccobene c, Paolo Vavassori b

a Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
b Department of Economics and Technology Management, Information Technology and Production, Università degli Studi di Bergamo, Italy
c Dipartimento di Informatica, Università degli Studi di Milano, Italy

a r t i c l e i n f o

Article history:

Received 12 August 2015

Revised 29 January 2016

Accepted 30 January 2016

Available online xxx

Keywords:

Equivalent mutant

Static anomaly

Quality measure

a b s t r a c t

Context: In mutation analysis, a mutant of a software artifact, either a program or a model, is said

equivalent if it leaves the artifact meaning unchanged. Equivalent mutants are usually seen as an incon-

venience and they reduce the applicability of mutation analysis.

Objective: Instead, we here claim that equivalent mutants can be useful to define, detect, and remove

static anomalies, i.e., deficiencies of given qualities: If an equivalent mutant has a better quality value

than the original artifact, then an anomaly has been found and removed.

Method: We present a process for detecting static anomalies based on mutation, equivalence checking,

and quality measurement.

Results: Our proposal and the originating technique are applicable to different kinds of software artifacts.

We present anomalies and conduct several experiments in different contexts, at specification, design, and

implementation level.

Conclusion: We claim that in mutation analysis a new research direction should be followed, in which

equivalent mutants and operators generating them are welcome.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mutation has a long history and has been applied to several ar-

eas of software engineering [1] and to different kinds of software

artifacts, as code and formal specifications [2–4]. The main appli-

cation of mutation analysis is mutation testing [5], in which faults

are artificially introduced in the code under test and test cases are

used to detect (or kill) these faults (mutants). Good tests can kill all

the injected faults in the program or, at least, most of them: a test

suite has a mutation score equal to the portion of mutants it can

kill. However, some mutants are impossible to kill since only be-

havioral faults can be detected by a test: a mutant is said equivalent

if it leaves the behavior of the program unchanged. Equivalent mu-

tants cannot be detected by a test and thus they reduce the muta-

tion score of a test suite without a real justification. Also in test

generation, equivalent mutants pose a challenge: they consume

resources without producing any useful test. Equivalent mutants

are therefore usually seen as an inconvenience and the equivalent

∗ Corresponding author. Tel.: +420 221914285.

E-mail address: arcaini@d3s.mff.cuni.cz (P. Arcaini).

mutant problem is considered as one of the main causes why mu-

tation testing is seldom used in practice [5,6]. Several attempts

have been proposed to eliminate them (e.g., by filtering), or to au-

tomatically find and avoid them [7,8].

Due to the aforementioned problems, equivalent mutants

earned a bad reputation. Following our early position paper [9], we

aim in this paper at rehabilitating equivalent mutants reputation,

since we claim that they can be useful to discover non-behavioral

faults, a category of faults that has not been targeted in mutation

analysis so far. When looking for non-behavioral faults, equivalent

mutants should be seen as an opportunity, and the long time expe-

rience in finding them should be reused.

We define a certain type of non-behavioral faults, that we call

static anomalies, in terms of equivalent mutants. We show that if,

given an artifact A and a quality of A (like readability, efficiency

and, so on), we are able to produce an equivalent mutant with bet-

ter quality than A, then A contains a static anomaly that should be

removed. Differently from classical approaches targeting behavioral

faults, we aspire to have a lot of equivalent mutants, since they can

be used to detect anomalies.

We present a process for detecting static anomalies based on

mutation, equivalence checking, and quality checking. We show

http://dx.doi.org/10.1016/j.infsof.2016.01.019

0950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: P. Arcaini et al., A novel use of equivalent mutants for static anomaly detection in software artifacts, Informa-

tion and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.01.019

http://dx.doi.org/10.1016/j.infsof.2016.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:arcaini@d3s.mff.cuni.cz
http://dx.doi.org/10.1016/j.infsof.2016.01.019
http://dx.doi.org/10.1016/j.infsof.2016.01.019


2 P. Arcaini et al. / Information and Software Technology 000 (2016) 1–13

ARTICLE IN PRESS
JID: INFSOF [m5G;February 16, 2016;9:37]

that this process is applicable to several types of artifacts produced

at different phases of the software life cycle (at specification, de-

sign, and implementation levels), for several anomalies, and using

several mutation operators.

The paper is organized as follows. Section 2 introduces some

background on the classical definition of software anomaly, mu-

tation, and the problem of equivalent mutants. Section 3 presents

our definition of static anomalies in terms of equivalent mutants

and a technique for discovering them. Sections 4 and 5 show the

application of the technique at the specification level (on feature

models and NuSMV models), Sections 6 and 7 at the implementa-

tion level (on Boolean expressions and source code), and Section 8

on package dependency graphs (either at the design or implemen-

tation level). Section 9 discusses some threats to the validity of

our proposal, while Section 10 presents some related work. Finally,

Section 11 concludes the paper.

2. Background

We here briefly review some basic concepts on software

anomalies, mutation, and equivalent mutants.

2.1. Software anomalies

Software anomalies are defined in the IEEE standard [10] as:

Any condition that deviates from the expected based on require-

ments specifications, design documents, user documents, standards,

etc. or from someone’ s perceptions or experiences. Anomalies may

be found during, but not limited to, the review, test, analysis, compi-

lation, or use of software products or applicable documentation.

In this paper, we refer to software artifact as any product that is

developed along the software life cycle at several levels: for exam-

ple, source code at implementation level or models at specification

level.

According to the IEEE standard, each software artifact should

have some quality attributes (like readability, compactness, efficiency,

correctness, etc.) and an anomaly is any deviation in terms of the

expected (quality) attributes. For example, faults represent devia-

tions w.r.t. the expected behavior, dead code is a deviation w.r.t.

compactness.

We here focus on static anomalies, i.e., anomalies that can be

removed without changing the “meaning” of the artifact. Static

anomalies regard the artifacts’ structure and they relate to quali-

ties that may be statically measured.

2.2. Mutation

Mutation is a well known technique in the context of software

artifacts as program code and formal specifications. It consists in

introducing small modifications into the artifact such that these

simple syntactic changes, called mutations, represent typical mis-

takes that programmers or designers often make. These faults are

deliberately seeded into the original artifact in order to obtain a

set of faulty variations called mutants. A transformation rule gen-

erating a mutant from the original artifact is known as mutation

operator.

Mutation is very often used in combination with program test-

ing, and its use is twofold. Mutants are classically used to assess

the quality of test suites. High quality test suites should be able to

distinguish the original program from its mutants, i.e., to detect the

seeded faults. Given a test suite T, if the result of running a mu-

tant is different from the result of running the original program

for at least a test case in T, then the mutant is said to be killed;

otherwise, it is said to have survived. A test suite has a mutation

score equal to the portion of mutants it can kill. After all test cases

have been executed, there may still be a few surviving mutants. To

improve the test suite T, the program tester can provide additional

test inputs to kill these surviving mutants. In this case, mutation is

used for test generation purposes.

The history of mutation can be traced back to the 70s [1]. Mu-

tation has been mainly applied to programming languages, but also

at the design level to formal specifications [2–4,11–13].

2.3. Equivalent mutants

When a mutant has the same meaning (e.g., the same behavior

for programs or the same logical models for Boolean expressions)

as the original artifact, it is said to be equivalent. These mutants are

syntactically different but semantically equivalent to the original

artifact.

Equivalent mutants are considered as one of the main causes

why mutation testing is seldom used in practice [5,6]. In software

testing, equivalent mutants do not represent actual faults and can-

not be detected (killed) by a test. They thus reduce the quality

index (mutation score) of a test suite without a real justification.

In test generation, equivalent mutants consume resources without

producing any useful test.

In code mutation, automatically detecting all equivalent mu-

tants is impossible [14] because program equivalence is undecid-

able [15]. Several attempts try to eliminate (e.g., by filtering) or to

avoid them [7,8].

In the context of other software artifacts with a higher abstrac-

tion level than code, and with a concept of equivalence and a tech-

nique for checking it, some approaches for detecting equivalent

mutants have been developed [2,3]. However, also in these con-

texts, equivalent mutants are seen as an inconvenience [16,17] and

efforts to detect them are only finalized to skip them.

In the approach presented here, we rehabilitate equivalent mu-

tants, in the sense that the goal of detecting them is finalized to

use them to improve artifacts’ qualities, and not to eliminate or

avoid them.

3. Using mutation to detect static anomalies

In this section, we introduce our definition of static anomalies

in terms of equivalent mutants, and we propose a technique for

anomaly detection.

3.1. Static anomalies

We define the concept of static anomaly in terms of equivalence

and quality of artifacts. We assume that one can define a quality

q over artifacts and that q induces a partial order (of better qual-

ity) > q among all the artifacts, i.e., an artifact may be better than

another one in terms of a certain quality q. Whenever possible, we

will define q as a real-valued function over the considered artifacts,

such that q induces a total order. Moreover, we assume that it is

possible to check equivalence among artifacts.

Given a certain quality q, an artifact may contain a static

anomaly in terms of q if the following condition holds:

Definition 1 (Static anomaly detection). Given an artifact A and its

mutation A′, if A′ is equivalent to A (i.e., A ≡ A′) and A′ > qA, then

A contains a static anomaly. The static anomaly is the difference

between A′ and A.

Thesis 1. Each classic static anomaly introduced in the literature

can be redefined in terms of Definition 1.

3.2. Detecting static anomalies

Definition 1 gives the foundation of a methodology for defin-

ing, finding, and possibly removing static anomalies. Normally, the

Please cite this article as: P. Arcaini et al., A novel use of equivalent mutants for static anomaly detection in software artifacts, Informa-

tion and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.01.019

http://dx.doi.org/10.1016/j.infsof.2016.01.019


Download English Version:

https://daneshyari.com/en/article/4972358

Download Persian Version:

https://daneshyari.com/article/4972358

Daneshyari.com

https://daneshyari.com/en/article/4972358
https://daneshyari.com/article/4972358
https://daneshyari.com

