
ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Information and Software Technology 0 0 0 (2016) 1–17

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A path-aware approach to mutant reduction in mutation testing

Chang-ai Sun

a , ∗, Feifei Xue

a , Huai Liu

b , Xiangyu Zhang

c

a School of Computer and Communication Engineering, University of Science and Technology Beijing, China
b Australia-India Research Centre for Automation Software Engineering, RMIT University, Melbourne, Australia
c Department of Computer Science, Purdue University, West Lafayette, IN, USA

a r t i c l e i n f o

Article history:

Received 1 August 2015

Revised 15 February 2016

Accepted 22 February 2016

Available online xxx

Keywords:

Mutation testing

Selective mutation testing

Control flow

Path depth

a b s t r a c t

Context : Mutation testing, which systematically generates a set of mutants by seeding various faults into

the base program under test, is a popular technique for evaluating the effectiveness of a testing method.

However, it normally requires the execution of a large amount of mutants and thus incurs a high cost.

Objective : A common way to decrease the cost of mutation testing is mutant reduction, which selects a

subset of representative mutants. In this paper, we propose a new mutant reduction approach from the

perspective of program structure.

Method : Our approach attempts to explore path information of the program under test, and select mu-

tants that are as diverse as possible with respect to the paths they cover. We define two path-aware

heuristic rules, namely module-depth and loop-depth rules, and combine them with statement- and

operator-based mutation selection to develop four mutant reduction strategies.

Results : We evaluated the cost-effectiveness of our mutant reduction strategies against random mutant

selection on 11 real-life C programs with varying sizes and sampling ratios. Our empirical studies show

that two of our mutant reduction strategies, which primarily rely on the path-aware heuristic rules, are

more effective and systematic than pure random mutant selection strategy in terms of selecting more

representative mutants. In addition, among all four strategies, the one giving loop-depth the highest pri-

ority has the highest effectiveness.

Conclusion : In general, our path-aware approach can reduce the number of mutants without jeopardizing

its effectiveness, and thus significantly enhance the overall cost-effectiveness of mutation testing. Our

approach is particularly useful for the mutation testing on large-scale complex programs that normally

involve a huge amount of mutants with diverse fault characteristics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mutation testing, basically a fault-based software testing tech-

nique [1,2] , was originally proposed to measure the adequacy of

a given test suite and help design new test cases to improve the

quality of the test suite. It has been used for different purposes,

such as the generation of test cases and oracles [3] , fault localiza-

tion [4] , etc. Fig. 1 shows the principle of mutation testing. Given

a base program, different variants, namely mutants, can be gener-

ated by seeding various faults through mutation operators. Once

a test case shows different behaviors between a mutant and the

base program, the mutant is said to be killed by the test case (in

∗ Corresponding author. Tel.: +861062332931; fax: +861062332873.

E-mail addresses: casun@ustb.edu.cn , changai_sun2002@hotmail.com (C.-a. Sun),

729045626@qq.com (F. Xue), huai.liu@rmit.edu.au (H. Liu), xyzhang@cs.purdue.edu

(X. Zhang).

other words, the related fault is detected). Apparently, a test suite

is regarded as effective if it can kill as many mutants as possi-

ble (i.e. large mutation scores). A number of studies [5–7] have

shown that compared with manually fault-seeded programs, auto-

matically generated mutants are more similar to the real-life faulty

program. Thus, mutation testing has been acknowledged as an ef-

fective technique for evaluating the fault-detection capability of a

testing method.

However, the real-world application of mutation testing is hin-

dered by some drawbacks, such as the existence of equivalent mu-

tants, lack of appropriate automated tools, etc. One major draw-

back is the high cost: Due to the large number of mutation oper-

ators and possible locations to apply these operators into the pro-

gram, a huge volume of mutants are generated to guarantee that

various faults are covered as many as possible. The execution of all

these mutants is quite time-consuming, and the test result verifi-

cation on mutants is a non-trivial task.

http://dx.doi.org/10.1016/j.infsof.2016.02.006

0950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:casun@ustb.edu.cn
mailto:changai_sun2002@hotmail.com
mailto:729045626@qq.com
mailto:huai.liu@rmit.edu.au
mailto:xyzhang@cs.purdue.edu
http://dx.doi.org/10.1016/j.infsof.2016.02.006
http://dx.doi.org/10.1016/j.infsof.2016.02.006

2 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 1. Principle of mutation testing.

Some effort s have been made to decrease the cost of muta-

tion testing by reducing the number of mutants. Mathur and Wong

[8] proposed random mutant selection, which is simple and effi-

cient in execution. However, random selection may discard some

mutants that are difficult to be killed, and thus affect the qual-

ity of test suite that is designed based on the selected mutants. A

more systematic approach called operator-based mutant selection

[9] was proposed to select a subset of mutants based on certain

(not all) mutation operators. Nevertheless, some recent studies [10]

showed that the operator-based strategy is actually not superior to

random selection.

In this paper, we propose a new mutant reduction approach.

Instead of mutation operators, we conjecture that the fault charac-

teristics (in particular, how different a fault is to be detected) are

more related to the location of the fault, especially how deep the

fault location is in terms of program paths. Therefore, we explore

the mutant reduction based on the program structure. In particu-

lar, our work makes the following four contributions:

(I) A path-aware approach to mutant reduction is proposed,

which explores mutant reduction from the perspective of

the path depth in the program under test;

(II) We present four heuristic rules for mutant reduction, two

of which are path-aware, one statement-based, and one

operator-based;

(III) Four mutant reduction strategies are developed with differ-

ent priorities among the heuristic rules; and

(IV) The effectiveness of the mutant reduction strategies are

evaluated through an empirical study based on 11 real-life

programs. It is shown that two strategies giving higher pri-

orities to path-aware rules are superior to random mutant

selection, and are more effective than the other two giving

higher priorities to statement- or operator-based rules.

The rest of this paper is organized as follows. In Section 2 , we

introduce the underlying concepts and techniques. In Section 3 ,

we describe our heuristic rules and the mutant reduction strate-

gies. We present the design and setting of our empirical study in

Section 4 , and discuss the experimental results in Section 5 . The

work related to our study is discussed in Section 6 . Finally, we con-

clude the paper in Section 7 .

2. Preliminaries and terminology

In this section, we introduce the basic concepts and preliminar-

ies that will be used by path-aware mutant reduction technique.

All concepts are illustrated using an example program implement-

ing heap sort, as shown in Fig. 2 . The function call diagram of the

program is given in Fig. 3 .

Practically, a program is often composed of a number of mod-

ules, such as functions in C programs. We distinguish these mod-

ules into caller and callee based on the invoking relationship

among them [11] .

Definition 1. If module m directly invokes module n , module m is

termed as the caller and module n the callee. The invoking relation

is represented as m → n .

Definition 2. Callers (m) refers to the set of direct callers of module

m , that is, Cal l ers (m) = { x | x → m } .
For example, in the heap sort program (Figs. 2 and 3), f 1 → f 2 ,

that is, between modules f 1 and f 2 , f 1 is the caller, while f 2 is the

callee. According to Fig. 3 , we can get the following:

• Cal l ers (f 1) = ∅ .
• Cal l ers (f 2) = { f 1 } .
• Cal l ers (f 3) = { f 1 } .
• Cal l ers (f 4) = { f 2 } .
• Cal l ers (f 5) = { f 2 , f 4 } .

We now define the module depth MD (m i) of a module m i based

on the invoking relation among modules.

Definition 3. For a module m i ,

MD (m i) = ⎧ ⎨

⎩

0 ; Cal l ers (m i) = ∅
max

(
MD (m j | m j ∈ Cal l ers (m i))

)
+ 1 ; Cal l ers (m i) � = ∅

For the heap sort program, we have the following calculations:

• Since Cal l ers (f 1) = ∅ , MD (f 1) = 0 .
• Since Cal l ers (f 2) = { f 1 } , MD (f 2) = max (MD (f 1)) + 1 = 0 + 1 =

1 .
• Since Cal l ers (f 3) = { f 1 } , MD (f 3) = max (MD (f 1)) + 1 = 0 + 1 =

1 .
• Since Cal l ers (f 4) = { f 2 } , MD (f 4) = max (MD (f 2)) + 1 = 1 + 1 =

2 .
• Since Cal l ers (f 5) = { f 2 , f 4 } , MD (f 5) = max (MD (f 2) , MD (f 4)) +

1 = max (1 , 2) + 1 = 2 + 1 = 3 .

Note that there may exist recursive calls among modules, which

in turn results in a cycle in the function call diagram. In this situa-

tion, we can break the cycle from the back edges in recursive calls,

as discussed in [11] .

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006

Download English Version:

https://daneshyari.com/en/article/4972359

Download Persian Version:

https://daneshyari.com/article/4972359

Daneshyari.com

https://daneshyari.com/en/article/4972359
https://daneshyari.com/article/4972359
https://daneshyari.com

