
ARTICLE IN PRESS 

JID: INFSOF [m5G; May 10, 2016;20:30 ] 

Information and Software Technology 0 0 0 (2016) 1–15 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Mutant reduction based on dominance relation for weak mutation 

testing 

Dunwei Gong 

a , b , Gongjie Zhang 

c , e , ∗, Xiangjuan Yao 

d , Fanlin Meng 

f 

a School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China 
b School of Electrical Engineering and Information Engineering, LanZhou University of Technology, Lanzhou, Gansu, 730050, China 
c School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China 
d School of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China 
e School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China 
f Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, LE11 3TU, UK 

a r t i c l e i n f o 

Article history: 

Received 17 August 2015 

Revised 29 April 2016 

Accepted 2 May 2016 

Available online xxx 

Keywords: 

Software testing 

Weak mutation testing 

Mutant 

Reduction 

Dominance relation 

a b s t r a c t 

Context: As a fault-based testing technique, mutation testing is effective at evaluating the quality of ex- 

isting test suites. However, a large number of mutants result in the high computational cost in mutation 

testing. As a result, mutant reduction is of great importance to improve the efficiency of mutation testing. 

Objective: We aim to reduce mutants for weak mutation testing based on the dominance relation 

between mutant branches. 

Method: In our method, a new program is formed by inserting mutant branches into the original 

program. By analyzing the dominance relation between mutant branches in the new program, the non- 

dominated one is obtained, and the mutant corresponding to the non-dominated mutant branch is the 

mutant after reduction. 

Results: The proposed method is applied to test ten benchmark programs and six classes from open- 

source projects. The experimental results show that our method reduces over 80% mutants on average, 

which greatly improves the efficiency of mutation testing. 

Conclusion: We conclude that dominance relation between mutant branches is very important and 

useful in reducing mutants for mutation testing. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Software testing, which is used to seek existing defects or faults 

in software before it is released to the market, is an important 

way to improve software quality. Mutation testing is commonly 

used to evaluate the quality of existing test suites to guide testers 

how they might be able to improve them [1] . Compared with other 

structural coverage criteria, test suites that are mutation adequate 

can reveal more faults [2] . It is noticeable that mutation testing has 

attracted widespread attention from researchers and developers in 

both academia and industry. 

Mutation testing is a fault-based technique [3,4] , and the re- 

lated concepts are given as follows. By making a simple syntactic 

change to the original program, a mutant is generated. A rule used 

to perform the syntactic changes is called a mutation operator. If 

a test datum can distinguish the outputs between a mutant and 

∗ Corresponding author. 

E-mail addresses: dwgong@vip.163.com (D. Gong), zhanggongjie@126.com (G. 

Zhang). 

its original program, the mutant is said to be killed . A mutant is 

equivalent, if it cannot be killed by any test datum. Generally, the 

adequacy of mutation testing named mutation score is defined as 

the ratio of the number of killed mutants to the total number of 

non-equivalent mutants. 

In order to optimize the execution of the traditional mutation 

testing, Howden first proposed weak mutation testing [5] . Instead 

of checking a mutant after executing the whole program, weak 

mutation testing checks a mutant immediately after executing the 

mutated statement. 

In mutation testing, mutants are employed to reflect possible 

real faults in software under test [6–8] . Many lines of code (LOCs), 

complicated statements, and a variety of data types [9] in soft- 

ware greatly increase the number of mutants. It results in the high 

computational cost in mutation testing, therefore the mutant re- 

duction is of great importance and necessity. Although there have 

been several techniques for mutant reduction [10–16] , their effi- 

ciency needs to be further improved. 

Just et al. focused on the COR and ROR mutation operators to 

identify redundant mutants [13] . Kaminski et al. sought a subset 

http://dx.doi.org/10.1016/j.infsof.2016.05.001 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: D. Gong et al., Mutant reduction based on dominance relation for weak mutation testing, Information and 

Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.05.001 

http://dx.doi.org/10.1016/j.infsof.2016.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:dwgong@vip.163.com
mailto:zhanggongjie@126.com
http://dx.doi.org/10.1016/j.infsof.2016.05.001
http://dx.doi.org/10.1016/j.infsof.2016.05.001


2 D. Gong et al. / Information and Software Technology 0 0 0 (2016) 1–15 

ARTICLE IN PRESS 

JID: INFSOF [m5G; May 10, 2016;20:30 ] 

of relational operators that subsumes the others to reduce mutants 

[14] . Focusing only on a subset of mutation operators opens new 

research directions [13,14] . Papadakis and Malevris transformed the 

problem of killing mutants into the problem of covering mutant 

branches in the new program, and generated test data by conven- 

tional approaches [17] . Although it is relatively efficient, a large 

number of mutants without reduction, will inevitably add high 

complexity to the new program. 

In the previous work on dominance analysis, Marre and 

Bertolino employed the subsumption relation between entities in 

a ddgraph (a simplified control flow graph) to seek the minimal 

set of entities named the spanning set, so as to reduce the num- 

ber of entities needed to cover [18] . In addition, Ghiduk and Girgis 

identified the non-dominated nodes in a control flow graph (CFG) 

by analyzing the dominance relation between nodes [19] . Both the 

above methods are performed among the original entities (nodes) 

for structural coverage testing. Different from the above work, we 

analyze the dominance relation between mutant branches, which 

are instrumented branches transformed from mutants based on the 

method presented by Papadakis and Malevris for weak mutation 

testing, with the aim to reduce the number of mutants, and to im- 

prove the efficiency of testing. 

Considering all the traditional (method level) mutation opera- 

tors, we first construct mutant branches based on the statements 

before and after mutation, and form the new program by fusing all 

mutant branches into the original program using the method pro- 

posed by Papadakis and Malevris [17] . Then, we identify redundant 

mutants according to the dominated mutant branches after man- 

ual analysis with the aid of the dominance relation graph. Mutants 

associated with the non-dominated ones will remain. The test data 

that cover the non-dominated mutant branches can also cover all 

the mutant branches, i.e., kill all the mutants before reduction in 

weak mutation testing. 

The basic idea of defining the dominance relation between 

mutant branches and applying the dominance relation to reduce 

mutants was initially reported, with examples on several small 

programs, at the 2nd Chinese Search Based Software Engineering 

(CSBSE’2013) workshop [20] . Given the fact that the two-page ab- 

stract is preliminary, we have extended the idea in the following 

four new directions: 

(1) defining four concepts, mutant branch, dominance relation, 

non-dominated branch, and dominance relation graph; 

(2) presenting two theorems on how to form the non- 

dominated mutant branch set and identify the non- 

dominated mutants; 

(3) providing an example throughout the whole paper to intu- 

itively demonstrate the above work; 

(4) evaluating the proposed method by applying it to ten bench- 

mark programs and six classes from open-source projects 

with various sizes and complexities. 

The main contributions of this paper are as follows: 

• A method of reducing mutants is proposed for weak mutation 

testing, which is conducted by analyzing the dominance relation 

between mutant branches in the new program. 

• Four definitions of identifying the dominance relation be- 

tween mutant branches are provided, and the dominance relation 

graph is given to describe all the dominance relations in the new 

program. 

• Two theorems of determining the non-dominated mutant 

branches are given, so as to reduce redundant mutants. 

• The proposed method is applied to ten benchmark programs 

and six classes from open-source projects, and the experimental 

results suggest that our method reduces over 80% mutants. 

2. Related work 

Reducing mutants is of effectiveness to save computational cost 

for mutation testing. Weak mutation testing is a technique in 

view of saving execution time. Additionally, there are correlations 

among statements in a program, and correlation analysis is helpful 

to mutation testing. This section will review the related work from 

the above aspects. 

2.1. Mutant reduction 

For software under test, a large number of mutants cause 

high cost in mutation testing, which can be solved by mutant 

reduction. Mutant sampling proposed by Acree and Budd ran- 

domly selects a specific percentage of mutants to execute testing 

[21,22] . Mathur and Wong investigated the influence of the sam- 

pling rate on the mutation adequacy [23] . They conducted a se- 

ries of experiments by changing the rate from 0.1 to 0.4 in the 

step of 0.05, and the experimental results suggest that the muta- 

tion score decreases as the sampling rate reduces. Unlike random 

sampling, Hussain extracted a set of representative mutants to test 

after clustering, and his method maintains a high mutation score 

[24] . 

To reduce mutants, Mathur suggested that two mutation opera- 

tors (i.e., Array reference for Scalar variable Replacement (ASR) and 

Scalar Variable Replacement (SVR)), which will generate around 

30% to 40% of the total mutants, should be omitted, and pro- 

posed selective mutation testing [25] . By Extending Mathur’s idea, 

Offutt et al. performed 2-selective experiments (omitting ASR 

and SVR) and achieved 24% mutant reduction with 99.99% mu- 

tation score. Further in 4-selective and 6-selective experiments, 

they got much higher reduction rates but lower mutation scores 

[26] . By analyzing the distribution of 22 mutation operators in 

28 programs, Offutt et al. obtained a high mutation score with 

only 5 operators [27] . Different from the prior selective muta- 

tion that reduces mutants with acceptable loss in the test ade- 

quacy, Mresa and Bottaci compared mutation operators in terms 

of both score and cost to seek the most efficient mutation opera- 

tors [28] . By manual analysis, Yao et al. revealed a highly uneven 

distribution of equivalent mutants and stubborn mutants (those 

that remain undetected by a test suite with high quality, yet are 

non-equivalent) [29] . Their work is beneficial to designing mu- 

tation tools, and reduces the human effort involved in mutation 

testing. 

The above techniques, mutant sampling and selective muta- 

tion, are from First Order Mutants (FOMs) perspective. In view 

of the fact that High Order Mutants (HOMs, more than one syn- 

tactic change in a program) not only represent complex faults in 

practical software, but also reduce the number of mutants [30] , 

studies on HOMs have arisen in recent years. Jia and Harman uti- 

lized meta-heuristic search algorithms to generate semantic HOMs 

which are hard to kill, and reduced mutants greatly [4] . Langdon 

et al. combined FOMs with close semantic relations to form HOMs 

[31] . Second-order mutants (SOMs, two syntactic changes in a pro- 

gram) proposed by Polo et al. get 50% cost saving [32] . Kintis et al. 

focused on control relations among nodes in the CFG of a program, 

and presented three strategies for combining SOMs [33] . Papadakis 

and Malevris conducted an empirical study for the first and the 

second order mutation testing strategies, and found that the first 

order mutation testing strategies are generally more effective than 

the second order ones, and the latter drastically reduce equivalent 

mutants, thus forming a valid cost effective alternative to mutation 

testing [34] . However, the growing order of HOMs results in signif- 

icant cost increase in generating HOMs, which further illustrates 

the necessity of reducing mutants. 

Please cite this article as: D. Gong et al., Mutant reduction based on dominance relation for weak mutation testing, Information and 

Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.05.001 

http://dx.doi.org/10.1016/j.infsof.2016.05.001


Download English Version:

https://daneshyari.com/en/article/4972360

Download Persian Version:

https://daneshyari.com/article/4972360

Daneshyari.com

https://daneshyari.com/en/article/4972360
https://daneshyari.com/article/4972360
https://daneshyari.com

