
ARTICLE IN PRESS 

JID: INFSOF [m5G; April 16, 2016;21:46 ] 

Information and Software Technology 0 0 0 (2016) 1–15 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Memory mutation testing 

Fan Wu 

∗, Jay Nanavati , Mark Harman , Yue Jia , Jens Krinke 

CREST, University College London, WC1E 6BT, UK 

a r t i c l e i n f o 

Article history: 

Received 15 August 2015 

Revised 10 February 2016 

Accepted 10 March 2016 

Available online xxx 

Keywords: 

Mutation testing 

Memory mutation 

a b s t r a c t 

Context 

Three decades of mutation testing development have given software testers a rich set of mutation oper- 

ators, yet relatively few operators can target memory faults (as we demonstrate in this paper). 

Objective 

To address this shortcoming, we introduce Memory Mutation Testing, proposing 9 Memory Mutation Op- 

erators each of which targets common forms of memory fault. We compare Memory Mutation Operators 

with traditional Mutation Operators, while handling equivalent and duplicate mutants. 

Method 

We extend our previous workshop paper, which introduced Memory Mutation Testing, with a more ex- 

tensive and precise analysis of 18 open source programs, including 2 large real-world programs, all of 

which come with well-designed unit test suites. Specifically, our empirical study makes use of recent re- 

sults on Trivial Compiler Equivalence (TCE) to identify both equivalent and duplicate mutants. Though the 

literature on mutation testing has previously deployed various techniques to cater for equivalent mutants, 

no previous study has catered for duplicate mutants. 

Results 

Catering for such extraneous mutants improves the precision with which claims about mutation scores 

can be interpreted. We also report the results of a new empirical study that compares Memory Muta- 

tion Testing with traditional Mutation Testing, providing evidence to support the claim that traditional 

mutation testing inadequately captures memory faults; 2% of the memory mutants are TCE-duplicates of 

traditional mutants and average test suite effectiveness drops by 44% when the target shifts from tradi- 

tional mutants to memory mutants. 

Conclusions 

Introducing Memory Mutation Operators will cost only a small portion of the overall testing effort, yet 

generate higher quality mutants compared with traditional operators. Moreover, TCE technique does not 

only help with reducing testing effort, but also improves the precision of assessment on test quality, 

therefore should be considered in other Mutation Testing studies. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Mutation testing is an effective fault-based testing technique 

that aims to identify whether a codebase is vulnerable to spe- 

cific classes of faults [1] . In mutation testing faults are deliberately 

seeded into the original program, by simple syntactic changes, 

∗ Corresponding author. Tel.: +44 (0)2076793058. 

E-mail addresses: fan.wu@ucl.ac.uk (F. Wu), jaysnanavati@hotmail.co.uk (J. 

Nanavati), mark.harman@ucl.ac.uk (M. Harman), yue.jia@ucl.ac.uk (Y. Jia), jens. 

krinke@ucl.ac.uk (J. Krinke). 

to create a set of faulty programs called mutants, each contain- 

ing a different syntactic change. By carefully choosing the loca- 

tion within the program and the types of faults, it is possible to 

detect vulnerabilities that are missed by traditional testing tech- 

niques [2,3] , to simulate any test adequacy criteria [4] whilst pro- 

viding improved fault detection [5,6] . 

Memory errors are one of the oldest classes of software vulner- 

abilities that can be maliciously exploited [7] . Despite more than 

two decades of research on memory safety, memory vulnerabili- 

ties have been still ranked in the top 3 of the CWE SANS top 25 

most dangerous programming errors [8] . Recent work on memory 

http://dx.doi.org/10.1016/j.infsof.2016.03.002 

0950-5849/© 2016 Published by Elsevier B.V. 

Please cite this article as: F. Wu et al., Memory mutation testing, Information and Software Technology (2016), 

http://dx.doi.org/10.1016/j.infsof.2016.03.002 

http://dx.doi.org/10.1016/j.infsof.2016.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:fan.wu@ucl.ac.uk
mailto:jaysnanavati@hotmail.co.uk
mailto:mark.harman@ucl.ac.uk
mailto:yue.jia@ucl.ac.uk
mailto:jens.krinke@ucl.ac.uk
http://dx.doi.org/10.1016/j.infsof.2016.03.002
http://dx.doi.org/10.1016/j.infsof.2016.03.002


2 F. Wu et al. / Information and Software Technology 0 0 0 (2016) 1–15 

ARTICLE IN PRESS 

JID: INFSOF [m5G; April 16, 2016;21:46 ] 

vulnerability detection [9–11] in C applications has shown the exis- 

tence of a wide range of vulnerabilities such as uninitialised mem- 

ory access, buffer overruns, invalid pointer access, beyond stack ac- 

cess, free memory access and memory leaks in published code. 

Moreover, these vulnerabilities are highly prone to exploitation. 

For example, vulnerabilities such as buffer overflows when using 

malloc() facilitate exploits that overwrite heap meta-data, gain 

access to unavailable function/data pointers, overwrite arbitrary 

memory locations, and create fake chunks of memory that may 

contain modified pointers. 

Traditional mutation operators only simulate simple syntactic 

errors based on the Competent Programmer Hypothesis [12] . Mu- 

tants generated using these operators may drive testers to gener- 

ate test suites mainly targeting simple syntactic errors. Semantic 

mutation operators on the other hand seek to mutate the seman- 

tics of the language [13] . The semantic mutants can capture the 

possible misunderstandings of the description language and thus 

capture the class of semantic faults. However, both traditional and 

semantic mutation operators are not designed to find test cases re- 

vealing memory faults, thereby creating a weakness in traditional 

Mutation Testing. 

To mitigate this limitation, there has been an attempt to de- 

sign mutation operators for a specific type of memory vulnerabil- 

ities, Buffer Overflow vulnerabilities [14] . This work proposed 12 

mutation operators that seek to simulate Buffer Overflow by mak- 

ing changes to the related vulnerable library functions and pro- 

gram statements. However, the proposed operators do not consider 

other general memory vulnerabilities, such as uninitialised mem- 

ory access, NULL pointer dereferencing nor memory leaks caused 

by faulty heap management. 

To address this problem we design 9 Memory Mutation Opera- 

tors, simulating three classes of common memory faults. We also 

introduce two additional weak killing criteria, i.e. Memory Fault 

Detection and Control Flow Deviation for memory mutants. Be- 

cause memory faults do not necessarily propagate to the output, 

making the strong killing criterion, which is widely adopted in tra- 

ditional Mutation Testing, inadequate to detect such faults. A single 

Mutation Testing tool was developed using both of the traditional 

and Memory Mutation Operators with the traditional strong killing 

criterion and the proposed weak killing criteria also incorporated. 

We compare the effectiveness of Memory Mutation Operators 

against traditional mutation operators using 18 subject programs 

with a variety of sizes. Our results show that our memory mutants 

introduced memory faults that cannot be simulated by traditional 

mutation operators. We also study the difference between tradi- 

tional strongly killing criterion with the proposed weakly killing 

criteria. The results show that, among 1536 generated memory 

mutants (with 90 TCE-equivalent or duplicate mutants excluded), 

traditional strong killing criterion killed only 43% of the mutants, 

leaving 869 mutants unkilled. We also find the two new mem- 

ory killing criteria introduced are more effective at distinguish- 

ing memory mutants, killing up to 80% of those survived mutants 

across all subject programs. 

This paper is an extension of our work published at Mutation’15 

[15] . The differences between this extended work and the previ- 

ous work include the following: 1) we extended our memory mu- 

tation tool to support traditional selective mutation, and refined 

the weakly killing criteria according to the feedback of the previ- 

ous work; 2) using the extended tool, we added new experiments 

to compare the prevalence and quality of traditional mutants and 

memory mutants; to make our evaluation more thorough, we re- 

ran all the experiments with additional analysis to reveal some 

equivalent mutants and duplicated mutants using the recently- 

introduced TCE equivalence technique [16] ; 3) furthermore, we 

added two additional large subjects and ran all the experiments on 

them as a case study. The quantitative results are different from 

the previous work due to more precise analysis, yet the conclu- 

sions remain consistent with the previous work. The primary con- 

tributions of this paper are as follows: 

1. The design of 9 Memory Mutation Operators to mimic several 

categories of memory faults. The mutants generated form these 

operators can be used to select tests that mitigate memory vul- 

nerabilities. 

2. A comprehensive empirical study exploring the characteristics 

of memory mutation operators and a further empirical study 

to compare them with the traditional operators. On 16 sub- 

ject programs, Memory Mutation Operators successfully insert 

memory faults and generate 368 mutants, 94% of them cannot 

be simulated by traditional mutation operators. A case study 

using 2 large programs demonstrates that Memory Mutation 

Operators are feasible to scale to large programs. 

3. The introduction of Memory Fault Detection (using Valgrind for 

precise assessment of memory faults) and Control Flow Devia- 

tion as additional killing criteria. This is the first weak killing 

criteria proposed for memory mutation and the results show 

that up to 80% of surviving mutants are killed by these addi- 

tional criteria. 

4. An open source C mutation testing tool 1 that features both 

traditional and Memory Mutation Operators. The tool also sup- 

ports traditional strong killing criteria as well as the Memory 

Fault Detection and Control Flow Deviation killing criteria. 

The rest of the paper is organised as follows: background the- 

ory and the problem statement are presented in Section 2 , while 

the methodology including Memory Mutation Operators and pro- 

posed new killing criteria are presented in Section 3 together with 

a list of research questions. Section 4 introduces the Mutation Test- 

ing framework and experimental setting, the results and analysis of 

which are shown in Section 5 . We summarise the threats to valid- 

ity and related work in Sections 6 and 7 respectively, followed by 

conclusions in Section 8 . 

2. Background 

Mutation Testing [1] is a white box testing technique that mea- 

sures the quality/adequacy of tests by examining whether the test 

set (test input data) used in testing can reveal certain types of 

faults. A mutation system defines a set of rules (mutation oper- 

ators) that generate simple syntactic alterations (mutants) of the 

Program Under Test (PUT), representing errors that a “competent 

programmer” would make, known as the Competent Programmer 

Hypothesis (CPH) [12] . 

To assess the quality of a given test suite, the set of gener- 

ated mutants are executed against the input test suite to deter- 

mine whether the injected faults can be detected. If a test suite 

can identify a mutant from the PUT (i.e. produce different execu- 

tion results), the mutant is said to be killed . Otherwise, the mu- 

tant is said to have survived (or to be live). A mutant may remain 

live because either it is equivalent to the original program (i.e. it 

is functionally identical to the original program although syntacti- 

cally different) or the test suite is inadequate to kill the mutant. 

The Mutation Score (MS) is used to quantify how adequate a test 

suite is in detecting the artificial faults. It is calculated as the fol- 

lowing formula: 

MS (P, T ) = 

number of mutants killed 

total number of non-equivalent mutants generated 

. 

P is the program under test and T is the set of tests. However, 

it is very hard and generally undecidable to determine the exact 

1 https://github.com/jaysnanavati/Mutate 

Please cite this article as: F. Wu et al., Memory mutation testing, Information and Software Technology (2016), 

http://dx.doi.org/10.1016/j.infsof.2016.03.002 

https://github.com/jaysnanavati/Mutate
http://dx.doi.org/10.1016/j.infsof.2016.03.002


Download English Version:

https://daneshyari.com/en/article/4972361

Download Persian Version:

https://daneshyari.com/article/4972361

Daneshyari.com

https://daneshyari.com/en/article/4972361
https://daneshyari.com/article/4972361
https://daneshyari.com

