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Abstract

Context: Testing for properties such as robustness or security is complicated because their concerns are often repeated
in many locations and muddled with the normal code. Such “cross-cutting concerns” include things like interrupt
events, exception handling, and security protocols. Aspect-oriented (AO) modeling allows developers to model the
cross-cutting behavior independently of the normal behavior, thus supporting model-based testing of cross-cutting
concerns. However, mutation operators defined for AO programs (source code) are usually not applicable to AO
models (AOMs) and operators defined for models do not target the AO features.

Objective: We present a method to design abstract tests at the aspect-oriented model level. We define mutation
operators for aspect-oriented models and evaluate the generated mutants for an example system. Method: AOMs
are mutated with novel operators that specifically target the AO modeling features. Test traces killing these mutant
models are then generated. The generated and selected traces are abstract tests that can be transformed to concrete
black-box tests and run on the implementation level, to evaluate the behavior of the woven cross-cutting concerns
(combined aspect and base models). Results: This paper is a significant extension of our paper at Mutation 2015. We
present a complete fault model, additional mutation operators, and a thorough analysis of the mutants generated for an
example system. Conclusions: The analysis shows that some mutants are stillborn (syntactically illegal) but none is
equivalent (exhibiting the same behavior as the original model). Additionally, our AOM-specific mutation operators
can be combined with pre-existing operators to mutate code or models without any overlap.
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1. Introduction and Background

Model-based development is gaining widespread use
in the software industry. Models provide a graphical
view of software behavior that developers find intuitive.
In addition, certain types of models, such as state charts
[23], Petri nets [47], and timed automata [5, 9] are use-
ful for analysis and verification purposes. Such models
can be used by model checkers to verify properties, e.g.,
to guarantee that a model is free from deadlocks, or to
infer the correct ordering of certain events. Moreover,
behavioral models can be used to generate test suites
that cover the software with respect to model elements
or sub paths [6,48]. Consequently, developers can better
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understand and analyze complex behavior by modeling
software behavior.

1.1. Aspect-Oriented Modeling
One proposed approach to managing complex be-

havioral models is to separate cross-cutting concerns
from the main behavior by using aspect-oriented mod-
eling [4, 13, 22, 28, 46]. A cross-cutting concern applies
throughout multiple locations in the software, and may
be crucial to the reliability, performance, security, or ro-
bustness of the system. Typical examples include events
that require immediate attention, such as intrusion at-
tempts or disturbances. Cross-cutting concerns have a
tendency to clutter models, leading to complex models
that are hard to analyze.

In aspect-oriented modeling, cross-cutting concerns
are modeled as aspects, which are separated from the
normal behavior, thus creating an aspect-oriented model
(AOM). The general idea with an AOM is to model the
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