
 

Accepted Manuscript

Using Mutation to Design Tests for Aspect-Oriented Models

Birgitta Lindström, Jeff Offutt, Daniel Sundmark, Sten F. Andler,
Paul Pettersson

PII: S0950-5849(16)30063-5
DOI: 10.1016/j.infsof.2016.04.007
Reference: INFSOF 5717

To appear in: Information and Software Technology

Received date: 21 July 2015
Revised date: 24 March 2016
Accepted date: 11 April 2016

Please cite this article as: Birgitta Lindström, Jeff Offutt, Daniel Sundmark, Sten F. Andler,
Paul Pettersson, Using Mutation to Design Tests for Aspect-Oriented Models, Information and Software
Technology (2016), doi: 10.1016/j.infsof.2016.04.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2016.04.007
http://dx.doi.org/10.1016/j.infsof.2016.04.007


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Using Mutation to Design Tests for Aspect-Oriented Models

Birgitta Lindströma,∗, Jeff Offuttb, Daniel Sundmarkc, Sten F. Andlera, Paul Petterssond

aUniversity of Skövde, Skövde, Sweden
bGeorge Mason University, Fairfax VA, USA

cSwedish Institute of Computer Science, Kista, Sweden
dMälardalen University, Västerås, Sweden

Abstract

Context: Testing for properties such as robustness or security is complicated because their concerns are often repeated
in many locations and muddled with the normal code. Such “cross-cutting concerns” include things like interrupt
events, exception handling, and security protocols. Aspect-oriented (AO) modeling allows developers to model the
cross-cutting behavior independently of the normal behavior, thus supporting model-based testing of cross-cutting
concerns. However, mutation operators defined for AO programs (source code) are usually not applicable to AO
models (AOMs) and operators defined for models do not target the AO features.

Objective: We present a method to design abstract tests at the aspect-oriented model level. We define mutation
operators for aspect-oriented models and evaluate the generated mutants for an example system. Method: AOMs
are mutated with novel operators that specifically target the AO modeling features. Test traces killing these mutant
models are then generated. The generated and selected traces are abstract tests that can be transformed to concrete
black-box tests and run on the implementation level, to evaluate the behavior of the woven cross-cutting concerns
(combined aspect and base models). Results: This paper is a significant extension of our paper at Mutation 2015. We
present a complete fault model, additional mutation operators, and a thorough analysis of the mutants generated for an
example system. Conclusions: The analysis shows that some mutants are stillborn (syntactically illegal) but none is
equivalent (exhibiting the same behavior as the original model). Additionally, our AOM-specific mutation operators
can be combined with pre-existing operators to mutate code or models without any overlap.

Keywords: Model-based testing, Aspect-oriented model, Mutation testing

1. Introduction and Background

Model-based development is gaining widespread use
in the software industry. Models provide a graphical
view of software behavior that developers find intuitive.
In addition, certain types of models, such as state charts
[23], Petri nets [47], and timed automata [5, 9] are use-
ful for analysis and verification purposes. Such models
can be used by model checkers to verify properties, e.g.,
to guarantee that a model is free from deadlocks, or to
infer the correct ordering of certain events. Moreover,
behavioral models can be used to generate test suites
that cover the software with respect to model elements
or sub paths [6,48]. Consequently, developers can better

∗Corresponding author: Birgitta Lindström, University of Skövde,
Box 408, 541 28 Skövde, Sweden, Tel.:+46 500 448368

Email address: birgitta.lindstrom@his.se (Birgitta
Lindström)

understand and analyze complex behavior by modeling
software behavior.

1.1. Aspect-Oriented Modeling
One proposed approach to managing complex be-

havioral models is to separate cross-cutting concerns
from the main behavior by using aspect-oriented mod-
eling [4, 13, 22, 28, 46]. A cross-cutting concern applies
throughout multiple locations in the software, and may
be crucial to the reliability, performance, security, or ro-
bustness of the system. Typical examples include events
that require immediate attention, such as intrusion at-
tempts or disturbances. Cross-cutting concerns have a
tendency to clutter models, leading to complex models
that are hard to analyze.

In aspect-oriented modeling, cross-cutting concerns
are modeled as aspects, which are separated from the
normal behavior, thus creating an aspect-oriented model
(AOM). The general idea with an AOM is to model the

Preprint submitted to Information and Software Technology April 13, 2016



Download English Version:

https://daneshyari.com/en/article/4972362

Download Persian Version:

https://daneshyari.com/article/4972362

Daneshyari.com

https://daneshyari.com/en/article/4972362
https://daneshyari.com/article/4972362
https://daneshyari.com

