
ARTICLE IN PRESS

JID: INFSOF [m5G; May 3, 2016;11:8]

Information and Software Technology 0 0 0 (2016) 1–23

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Formal mutation testing for Circus

Alex Alberto

a , ∗, Ana Cavalcanti b , Marie-Claude Gaudel c , Adenilso Simão

a

a Universidade de São Paulo, ICMC, São Carlos, Brazil
b Department of Computer Science, University of York, York YO10 5GH, UK
c LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay 91405, France

a r t i c l e i n f o

Article history:

Received 24 August 2015

Revised 22 March 2016

Accepted 4 April 2016

Available online xxx

Keywords:

Circus

Mutation

Testing

Formal specification

a b s t r a c t

Context: The demand from industry for more dependable and scalable test-development mechanisms has

fostered the use of formal models to guide the generation of tests. Despite many advancements having

been obtained with state-based models, such as Finite State Machines (FSMs) and Input/Output Transition

Systems (IOTSs), more advanced formalisms are required to specify large, state-rich, concurrent systems.

Circus , a state-rich process algebra combining Z, CSP and a refinement calculus, is suitable for this; how-

ever, deriving tests from such models is accordingly more challenging. Recently, a testing theory has been

stated for Circus , allowing the verification of process refinement based on exhaustive test sets.

Objective: We investigate fault-based testing for refinement from Circus specifications using mutation.

We seek the benefits of such techniques in test-set quality assertion and fault-based test-case selection.

We target results relevant not only for Circus , but to any process algebra for refinement that combines

CSP with a data language.

Method: We present a formal definition for fault-based test sets, extending the Circus testing theory,

and an extensive study of mutation operators for Circus . Using these results, we propose an approach to

generate tests to kill mutants. Finally, we explain how prototype tool support can be obtained with the

implementation of a mutant generator, a translator from Circus to CSP, and a refinement checker for CSP,

and with a more sophisticated chain of tools that support the use of symbolic tests.

Results: We formally characterise mutation testing for Circus , defining the exhaustive test sets that can

kill a given mutant. We also provide a technique to select tests from these sets based on specification

traces of the mutants. Finally, we present mutation operators that consider faults related to both reactive

and data manipulation behaviour. Altogether, we define a new fault-based test-generation technique for

Circus .

Conclusion: We conclude that mutation testing for Circus can truly aid making test generation from

state-rich model more tractable, by focussing on particular faults.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Testing from formal models is currently advancing as a solid ap-

proach to support the growing demand from industry for more de-

pendable and scalable test-development mechanisms. For instance,

Model-Based Testing (MBT) benefits greatly from a precise and

clear semantics for models, as opposed to informal or semi-formal

models whose semantics is dependent on the particular tool in

use.

Many advancements have been obtained with state-based mod-

els, such as Finite State Machines (FSMs) [1–10] and Input/Output

∗ Corresponding author. Tel.: +5516991582600.

E-mail address: alexdba@gmail.com (A. Alberto).

Transition Systems (IOTSs) [11–15] . Those models, however, quickly

become intractable when dealing with larger systems. Thus, more

advanced formalisms are required to facilitate the specification of

large, state-rich, concurrent systems.

Circus is a state-rich process algebra combining Z [16] , CSP

[17] , and a refinement calculus [18] . Its denotational and opera-

tional semantics are based on the Unifying Theories of Program-

ming (UTP) [19] . Circus can be used to verify large concurrent sys-

tems, including those that cannot be handled by model checking.

Circus has already been used to verify, for example, software in

aerospace applications [20] , and novel virtualization software by

the US Naval Research Laboratory [21] .

A theory of testing for Circus [22] , instantiating Gaudel’s long-

standing theory of formal testing [23–25] , is available. It is founded

http://dx.doi.org/10.1016/j.infsof.2016.04.003

0950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: A. Alberto et al., Formal mutation testing for Circus, Information and Software Technology (2016),

http://dx.doi.org/10.1016/j.infsof.2016.04.003

http://dx.doi.org/10.1016/j.infsof.2016.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:alexdba@gmail.com
http://dx.doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1016/j.infsof.2016.04.003

2 A. Alberto et al. / Information and Software Technology 0 0 0 (2016) 1–23

ARTICLE IN PRESS

JID: INFSOF [m5G; May 3, 2016;11:8]

on the Circus operational semantics [26] , described and justified

in the UTP [27] . As usual in testing, it considers divergence-free

processes for the model and the system under test. More precisely,

if a system under test diverges, since one cannot decide whether it

is deadlocked or divergent, divergence is assimilated to an unspec-

ified deadlock and detected as a failure.

The Circus testing theory introduces potentially infinite (sym-

bolic) exhaustive test sets. To achieve practical usefulness, it is,

therefore, mandatory to rely on selection criteria both to generate

and to select a finite set of tests.

Test-case generation in model-based testing is guided by testing

requirements that should be met by a test suite. Usually, the re-

quirements are either coverage criteria that state which elements

of the model should be traversed (covered) by test execution, or

fault models, which define specific faults that the test cases are

supposed to reveal, if present in the system. These approaches are

usually complementary to each other. Coverage-based testing is

proposed for Circus in [28] . It is worth investigating how fault-

based testing can complement the coverage testing.

Mutation testing is recogni sed as one of the most effective

fault-detection techniques [29] . The systematic injection of feasible

modelling faults into specifications allows the prediction of poten-

tial defective implementations. The faults are seeded by syntactic

changes that may affect the observable specified behaviour. Such

faulty models are “mutants”. A mutant is “killed” by a test case

able to expose its observable behaviour difference. Testing can ben-

efit from mutation in two ways [30] : some quality aspects of a test

set can be measured by the number of mutants it can kill, and the

analysis of a mutant model allows the selection of tests targeting

specific faults or fault classes.

In this paper, we introduce an approach to apply mutation test-

ing to Circus specifications. Most of the presented mutation oper-

ators, that is, the fault-injection strategies, are based on previous

works that have tackled similar challenges in related modelling

languages [31–33] . The outcome of all mutation operators are,

however, analyzed considering the specific features and particular-

ities of Circus . Moreover, our results are valid in the context of

other process algebras, especially those based on CSP [34,35] .

The contribution of this paper is manifold. First, we instanti-

ate the notions of mutation testing for a state-rich concurrent lan-

guage, namely, Circus , and its formal theory of testing. In particu-

lar, we face the challenge of associating mutations in the text of a

Circus specification to traces of the Circus denotational semantics

that define tests that cover the mutation. Even though mutation

testing has already been applied to languages and theories upon

which Circus is based, such as CSP [31] and the UTP [36] , the

consideration of a state-rich process algebra for refinement with

a UTP semantics is novel. Second, we propose mutation operators

for Circus , analysing and adapting existing ones for the underlying

languages and designing some that are specific to Circus . Third,

we describe prototype tool support for the application of the mu-

tant operators and two approaches to generate tests that can kill

these mutants. When it is feasible to translate the considered Cir-

cus specification into CSP, we propose the use of the FDR model

checker. For the other cases, we identify a tool chain that copes

directly with Circus specifications via slicing techniques and sym-

bolic execution.

This paper is organized as follows. Section 2 gives an overview

of the aspects of Circus and its testing theory that we use here.

Section 3 extends the testing theory to consider mutation testing

and describes our approach to generating tests based on mutants.

The mutation operators used to generate the mutants themselves

are defined in Section 4 . Tool support for automation of our ap-

proach is discussed in Section 5 , and an extra complete example is

introduced in Section 6 . Finally, we present some related and fu-

ture work and conclusions in Section 7 and 8 .

2. Circus and its testing theory

In this section, we give a brief description of the Circus lan-

guage, its operational semantics [26] , and its testing theory [22] .

2.1. Circus notation and operational semantics

As exemplified is Fig. 1 , Circus allows us to model systems and

their components via (a network of) interacting processes. In Fig. 1 ,

we define a single process Chrono that specifies the reactive be-

haviour of a chronometer. This is a process that recognises tick

events that mark the passage of time, a request to output the cur-

rent time via a channel time , and outputs minutes and seconds via

a channel out .

A Circus specification is defined by a sequence of paragraphs.

Roughly speaking, they define processes, but also channels, and

any types and functions used in the process specifications. In Fig. 1 ,

we define a type RANGE , including the valid values for seconds and

minutes, and the channels tick, time and out . The channel out is

typed, since it is used to communicate the current minutes and

seconds recorded in the chronometer as a pair. The final paragraph

in Fig. 1 defines Chrono itself.

Each process has:

a state and some operations for observing and changing it in a

Z style. In Chrono , the state is composed by a pair AState of

variables named sec and min with integer values between 0

and 59 (as defined by RANGE), and the data operations on

this state are specified by the three schemas AInit, IncSec,

IncMin .

actions that define communicating behaviours in a CSP style.

The overall behaviour of a process is specified by the main

action after the symbol ·. In our example, it is a sequential

composition of the schema AInit followed by the repeated

execution of the Run action. The Circus construct μ X · A (X)

defines a recursive action A , in which X is used for recursive

calls.

The initialisation schema AInit defines the values sec’ and min’

of the state components after the initialisation. These components

are declared using AState ′ . The operation schemas IncSec and In-

cMin change the state, as indicated by the declaration �AState .

They also define values sec’ and min’ of the state components after

the operations. In each case, the seconds and minutes are incre-

mented modulo 60.

Run starts with an external choice (�) between the events tick

and time . If the environment chooses the event tick , this is fol-

lowed by the increment of the chronometer using the data oper-

ation IncSec . Afterwards, we have another choice between actions

guarded by the conditions sec = 0 and sec � = 0 . If, after the incre-

ment, we have sec = 0 , then the minutes are incremented using

IncMin . Otherwise, the action terminates (Skip). If the event time

occurs, then the values of min and sec are displayed (output), us-

ing the channel out , before termination.

Circus comes with a denotational and an operational seman-

tics, based on Hoare and He’s Unifying Theories of Program-

ming (UTP) [19] , and a notion of refinement. We can use Circus

to write abstract as well as more concrete specifications, or even

programs. A full account of Circus and its denotational semantics

is given in [37] .

The operational semantics [26] plays an essential role on the

definition of testing strategies based on Circus specifications. It is

briefly introduced below, and a significant part is reproduced in

Appendix A . It is defined as a symbolic labelled transition sys-

tem between configurations. These are triples (c | s |� A) , with a

constraint c , a state s , and a continuation A , which is a Circus

action. Transitions associate two configurations and a label. The

Please cite this article as: A. Alberto et al., Formal mutation testing for Circus, Information and Software Technology (2016),

http://dx.doi.org/10.1016/j.infsof.2016.04.003

http://dx.doi.org/10.1016/j.infsof.2016.04.003

Download English Version:

https://daneshyari.com/en/article/4972363

Download Persian Version:

https://daneshyari.com/article/4972363

Daneshyari.com

https://daneshyari.com/en/article/4972363
https://daneshyari.com/article/4972363
https://daneshyari.com

