
ARTICLE IN PRESS 

JID: INFSOF [m5G; July 21, 2016;10:29 ] 

Information and Software Technology 0 0 0 (2016) 1–16 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Assessment of class mutation operators for C ++ with the MuCPP 

mutation system 

Pedro Delgado-Pérez 

∗, Inmaculada Medina-Bulo , Francisco Palomo-Lozano , 
Antonio García-Domínguez, Juan José Domínguez-Jiménez 

Department of Computer Science and Engineering, University of Cádiz, Cádiz, Spain 

a r t i c l e i n f o 

Article history: 

Received 31 July 2015 

Revised 18 June 2016 

Accepted 6 July 2016 

Available online xxx 

Keywords: 

Mutation testing 

Mutation system 

C ++ 

Class mutation operators 

Object-oriented programming 

a b s t r a c t 

Context: Mutation testing has been mainly analyzed regarding traditional mutation operators involving 

structured programming constructs common in mainstream languages, but mutations at the class level 

have not been assessed to the same extent. This fact is noteworthy in the case of C ++ , despite being one 

of the most relevant languages including object-oriented features. Objective: This paper provides a com- 

plete evaluation of class operators for the C ++ programming language. MuCPP , a new system devoted to 

the application of mutation testing to this language, was developed to this end. This mutation system 

implements class mutation operators in a robust way, dealing with the inherent complexity of the lan- 

guage. Method: MuCPP generates the mutants by traversing the abstract syntax tree of each translation 

unit with the Clang API, and stores mutants as branches in the Git version control system. The tool is 

able to detect duplicate mutants, avoid system headers, and drive the compilation process. Then, MuCPP 

is used to conduct experiments with several open-source C ++ programs. Results: The improvement rules 

listed in this paper to reduce unproductive class mutants have a significant impact in the computational 

cost of the technique. We also calculate the quantity and distribution of mutants generated with class 

operators, which generate far fewer mutants than their traditional counterparts. Conclusions: We show 

that the tests accompanying these programs cannot detect faults related to particular object-oriented fea- 

tures of C ++ . In order to increase the mutation score, we create new test scenarios to kill the surviving 

class mutants for all the applications. The results confirm that, while traditional mutation operators are 

still needed, class operators can complement them and help testers further improve the test suite. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

C ++ is a popular industrial-strength multiparadigm program- 

ming language, supporting concepts from both structured pro- 

gramming and object-oriented (OO) programming. However, be- 

cause of its advanced features and flexibility, it is not easy to 

learn. Inexperienced developers may misunderstand parts of the 

language, increasing the need for adequate testing. In this context, 

it is puzzling to see that not much attention has been paid to per- 

form mutation testing on C ++ programs. A survey of the overall 

state of mutation testing [1] lists many mutation systems for sim- 

ilar languages like Java or C#, but only a few commercial tools for 

C ++ that only apply some simple mutations. Given the widespread 

∗ Corresponding author. 

E-mail addresses: pedro.delgado@uca.es (P. Delgado-Pérez), 

inmaculada.medina@uca.es (I. Medina-Bulo), francisco.palomo@uca.es 

(F. Palomo-Lozano), antonio.garciadominguez@uca.es (A. García-Domínguez),

juanjose.dominguez@uca.es (J.J. Domínguez-Jiménez). 

use of C ++ , we can conclude that the large gap between the sys- 

tems for other languages and C ++ must originate from the specific 

challenges that C ++ presents. 

Mutation testing is a well-known fault-based technique which 

has been used since the late 1970s to evaluate and improve the 

quality of test suites designed for a system under test (SUT) [2] . 

This technique is based on the injection of simple changes into 

the code, following the rules prescribed by a set of mutation op- 

erators usually based on emulating real faults or promoting good 

coding practices. The new versions of the program are called mu- 

tants . Mutation testing is supported by the competent programmer 

hypothesis, which explains why most software faults have their 

origin in subtle defects. While Gopinath et al. [3] found that real 

faults tended to be more complex than most mutations, Just et al. 

[4] provided evidence that the simple errors introduced in the mu- 

tations were related to more complex ones. This is known as the 

coupling effect hypothesis. 

Mutation testing has been applied to different domains as new 

technologies appeared. The popularity of OO programming moti- 

http://dx.doi.org/10.1016/j.infsof.2016.07.002 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: P. Delgado-Pérez et al., Assessment of class mutation operators for C ++ with the MuCPP mutation system, 

Information and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.07.002 

http://dx.doi.org/10.1016/j.infsof.2016.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:pedro.delgado@uca.es
mailto:inmaculada.medina@uca.es
mailto:francisco.palomo@uca.es
mailto:antonio.garciadominguez@uca.es
mailto:juanjose.dominguez@uca.es
http://dx.doi.org/10.1016/j.infsof.2016.07.002
http://dx.doi.org/10.1016/j.infsof.2016.07.002


2 P. Delgado-Pérez et al. / Information and Software Technology 0 0 0 (2016) 1–16 

ARTICLE IN PRESS 

JID: INFSOF [m5G; July 21, 2016;10:29 ] 

vated the creation of class mutation operators for Java [5] and C# 

[6] . Nevertheless, existing tools for C ++ do not tackle mutation op- 

erators at the class level, i.e., operators injecting mutations con- 

cerning OO features. We have not found any studies in the litera- 

ture in this regard for C ++ either, while several authors have eval- 

uated sets of class mutation operators for Java [7,8] and C# [9] . 

This work aims to lower the barriers concerning the complex 

task of building an OO-aware C ++ mutation tool by presenting the 

MuCPP system. MuCPP can produce useful data regarding novel fea- 

tures of C ++ . In concrete terms, this paper aims to evaluate the 

class-level mutation operators for their validation. To the best of 

our knowledge, a mutation tool for this purpose has not been de- 

veloped so far. The abstract syntax tree (AST) produced by Clang, a 

widely known open-source compiler, is used to systematically in- 

ject the mutations in a robust and comprehensive way, taking into 

account the variety of issues that can arise when analyzing C ++ 

programs. Several aspects of the tool are described: the class mu- 

tation operators included, the process to produce the mutants and 

the overall system architecture and functionalities. 

In our previous work [10] , we showed an initial version of a 

set of class-level mutation operators for C ++ , conducted two case 

studies to evaluate how mutants were distributed across operators, 

and carried out a qualitative study on three specific class-level op- 

erators. The tool was first outlined in another previous work [11] . 

This paper extends the evaluation of the usefulness of the class- 

level operators with new case studies and compares them with 

traditional operators using MuCPP , which is presented in more 

depth. The relevant contributions of this paper are: 

1. A collection of restrictions on the generation of mutants 

(several of them are C ++ -specific). These improvement rules re- 

duce the number of unproductive mutants : those mutants which 

do not help the purpose of mutation testing as they do not 

provide interesting information for the assessment of a test 

suite. The conducted experiment, which evaluates these situa- 

tions creating unproductive mutants, shows that these rules en- 

hance mutant effectiveness and the efficiency of the system. 

2. A set of solutions for several technical challenges involved in 

C ++ mutation testing of real-world programs , such as the de- 

tection of duplicate mutants, system headers and the full com- 

mands to compile the source files analyzed. These solutions al- 

lowed MuCPP to perform the experiments in this paper. Gen- 

erating mutants as Git branches has been especially helpful 

to simplify implementation and save space without impacting 

scalability. 

3. A quantitative evaluation of the distribution of the mutants 

across five open-source programs , showing the number of 

mutants generated by each operator and various statistics about 

the mutations. The experiment reveals that since the class-level 

operators generate fewer mutants than traditional ones, using 

these operators takes less time overall. 

4. An assessment of the usefulness of class operators and a 

comparison with traditional operators . Mutation scores show 

that the tests distributed together with these SUTs did not han- 

dle some of the OO details. The class operators are shown to 

be useful in suggesting key missing test scenarios and helping 

find defects in the analyzed programs. The experiments provide 

evidence that the scenarios needed to kill certain class mutants 

may not be derivable from just using the traditional operators. 

The paper is structured as follows. Section 2 describes the evo- 

lution of mutation testing in general, the existing research and is- 

sues around C ++ mutation testing, and selects a metric for assess- 

ing operator quality. The next section introduces the MuCPP C ++ 

mutation system, the implemented mutation operators and its ap- 

proach across the different phases of the technique. Section 4 lists 

various restrictions imposed to improve operator effectiveness. 

Section 5 provides research questions and Section 6 answers them 

by discussing the results obtained in the conducted experiments. 

Section 7 explores related work, and the final Section 8 presents 

the conclusions and future research lines. 

2. Background 

2.1. Mutation testing evolution 

Mutation testing research dates back to the 1970s from the 

ideas posed by Hamlet [12] and DeMillo et al. in 1978 [13] . In its 

early years, this technique was developed for a limited number of 

procedural languages such as FORTRAN, Ada or C, creating sets of 

mutation operators for those languages commonly known as stan- 

dard or traditional operators. Some of these early landmarks are: 

• Agrawal et al. [14] defined in 1989 a set of 77 mutation op- 

erators for C, divided into four categories (statement, operator, 

variable and constant mutations). This collection constitutes a 

base for the composition of sets of mutation operators for dif- 

ferent programming languages afterwards. 

• King et al. [15] developed the tool Mothra including 22 opera- 

tors to apply mutation testing to FORTRAN. 

• Offutt et al. [16] composed a set of 65 Ada operators. 

Woodward [17] collected all the research on mutation testing 

from these first years. However, the appearance of new languages 

boosted research in the late 1990s and shifted the focus to other 

kinds of languages and domains [1] . Hence, in a short period, the 

technique has been applied to languages of diverse nature, and has 

also been used to detect faults in some technologies related to Web 

Services [18] or in the specification of models like Petri Nets [19] . 

The number of languages that have been tackled with this tech- 

nique has definitely expanded, including OO languages. Although 

the OO paradigm became widely used in the early 90s, research re- 

garding mutation testing started in 1999 with the definition of the 

first class operators for Java [20] . The class-level mutation opera- 

tors for Java were refined and increased later in [5,7,21] . Further- 

more, the first empirical studies on the effectiveness of class muta- 

tion operators have been accomplished recently [6,8,22] . Nonethe- 

less, we can find an assortment of tools to test Java programs since 

then, such as MuJava [7] or CREAM [23] . 

2.2. Challenges to address in C ++ 

When it comes to C ++ , it is no wonder that other languages 

have drawn more attention regarding object orientation because 

of the difference in complexity. Regarding the catalog of mutation 

operators, a rough approximation was made by Derezi ́nska [24] , 

but no operators were formally defined. The definition of a set of 

operators at the class level was carried out recently [10] . In the 

case of mutation systems for C ++ [1] , state-of-the-art commer- 

cial software adopting mutation testing within their testing tech- 

niques, like Insure ++ and PlexTest, do not cover mutations at the 

class level, but only some standard operations (e.g., the removal 

of expressions and subexpressions in PlexTest). As for open-source 

systems, CCMutator [25] is a mutation generator for concurrency 

constructs in C or C ++ applications. 

The intricate structures involved in the analysis at the class 

level and the variety of alternatives provided by the language re- 

quire thorough and arduous work. Indeed, the compilers for C ++ 

are more complex than compilers for other languages because of 

the size of the grammar and the ambiguities (the meaning of a to- 

ken depends on the context). At the same time, the compilers for 

this language have to deal with overgeneration during parsing [26] , 

which would be a problem to solve if we consider developing our 

Please cite this article as: P. Delgado-Pérez et al., Assessment of class mutation operators for C ++ with the MuCPP mutation system, 

Information and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.07.002 

http://dx.doi.org/10.1016/j.infsof.2016.07.002


Download English Version:

https://daneshyari.com/en/article/4972365

Download Persian Version:

https://daneshyari.com/article/4972365

Daneshyari.com

https://daneshyari.com/en/article/4972365
https://daneshyari.com/article/4972365
https://daneshyari.com

