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A B S T R A C T

Automatic trading systems, to support the decisions of investors in financial markets, are increasingly used
nowadays. Such systems process data on-line and provide signals of buy and sell in correspondence of pits
and peaks of the market. Real-time detection of turning points in financial time series is a challenging issue
and can only be performed with sequential methods. This paper considers non-linear and non-stationary
dynamic models used in statistics and econometrics, and evaluates their performance. In particular, it
compares Markov switching (MS) regression and time-varying parameter (TVP) methods; the latter extend
moving-average (MA) techniques which are widely used by traders. The novel approach of this paper is to
select the coefficients of the detection methods by optimizing the profit objective functions of the trading
activity, using statistical estimates as initial values. The paper also develops a sequential approach, based
on sliding windows, to cope with the time-variability of MS coefficients. An extensive application to the
daily Standard & Poor 500 index (the world’s leading indicator of stock values) in the period 1999–2015,
provides evidence in favor of models with a few parameters. This seems a natural consequence of the
complexity of the gain maximization problem, which usually admits multiple local solutions. Directions
for further research are represented by multivariate detection methods and the development of recursive
algorithms for gain optimization.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In financial economics, bull and bear markets are common ways
to describe periods where stock prices are persistently increas-
ing or decreasing. In a bull period, the market shows confidence,
high returns coupled with low variability, investors are positive
on the economic perspectives. On the contrary, during a bear
period the market is declining, usually with sharp drop and high
volatility; investors show lack of confidence and traded volumes are
stagnant. Following the decision rule to “buy low and sell high”,
traders should buy stocks as soon as a bull period starts, and values
increase, whereas they should sell as soon as a bear market takes
place, in order to avoid price drop. Reliable automatic methods are
then necessary to forecast or to promptly detect turning points in
financial time series [1,12].

Signaling methods used in finance, range from heuristic rules
based on moving averages (MA [24]) up to complex non-linear fil-
ters, which have hidden Markov dynamics (HM [21,23]), threshold
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autoregression (TAR, [22]) and neural networks (NN [25]). In this
paper we focus on Markov switching (MS) models developed by
Hamilton [13,15] since they are used both in financial and real
macroeconomics, e.g. [2,3,7,16,17]. In financial trading, MS mod-
els aim to capture the dynamics of stock values, by modeling time
series as the result of two or more alternating regimes. The switch-
ing mechanism is governed by an unobserved state-variable that
follows a first-order Markov chain, whose current value depends
on its immediate past. This approach is capable to represent the
dynamics and the distribution of stock returns, which have distinct
patterns on different periods [2].

Many studies in finance deal with foreign exchange rates and
aim to test the existence of non-linearity in the series and/or the
efficacy of MS models to support trading decisions, see [6–8]. Useful
empirical findings are that MS systems fit data better than linear
models, but only slightly outperform linear and MA rules in terms of
profitability [7, Table 3]. This issue has raised many interpretations
as to whether the MS approach may represent agent expectations
and behaviors; in fact, traders usually adopt MA rules to interact with
the market volatility and the monetary policy [3,6]. However, the
near equivalence of MS and MA in trading may arise from the fact
that MS models are estimated with statistical criteria, rather than
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economic ones, e.g. [8]. This remark stimulates the development of
technical solutions for improving the operational capabilities of the
MS modeling.

Financial economists usually consider two states, e.g. [3,6,7,20],
where the first represents the bull market and the second is the
bear market. By monitoring MS state probabilities, they deter-
mine when a time series changes the regime, so as to indicate the
investment decision. The parameters h of the models are estimated
with the maximum likelihood (ML) method, under the assumption
of Gaussian innovations; with them one can generate the required
state probabilities. Given a sample of size T, the smoothed (or back-
ward) probabilities are usually considered to infer the dominant
regime [3,4]; however, this solution fundamentally works off-line, on
the data available at time t < T (see [14, Chapter 22], [16]). In on-
line conditions, where stock data flow continuously, one may only
use prediction probabilities to identify the current state at time t ≥ T.

When monitoring the state probabilities, one cannot immedi-
ately decide whether to buy or sell until a new trend is reliably
assessed. In fact, one could observe local movements in stock prices
even between global peaks and troughs of the series [17]. Since only
persistent changes are of interest in trading, a threshold value 0 <
j < 1 must be introduced to discriminate significant changes. This
value could be selected on the basis of the standard errors of ML
estimates; however, a general problem is that such errors satisfy
a statistical criterion, not an economic one. In practice, ML esti-
mates, and the implied prediction probabilities, may not be optimal
in terms of profitability — just because the assumptions of Gaussian
innovations (or other distributions) and the Markov chain dynamics
of parameters may not be consistent with the data.

To avoid the constraints of MS models, one may consider
linear models whose parameters change over time in a non-
parametric way. The formal correspondence between non-linear
and non-stationary systems has been discussed by Granger [9] and
[22], who showed that parameter variability may arise from the
approximation of non-linear processes (including the MS). Further,
since adaptive models are only driven by a smoothing coefficients,
they may be considered as members of the class of MA rules. It
follows that, by sequentially estimating a linear model, one might
detect bull and bear phases by using, as threshold j, the off-line value
of parameters. A common adaptive estimator is the recursive least
square (RLS [11]) with discounted observations, which is tuned by a
coefficient 0 < k < 1.

In this paper we develop a detection method for regime vari-
ations which correspond to global peaks and troughs, i.e. relevant
turning points of financial time series. The approach consists of
selecting MS parameters through a criterion that embeds the
buy–sell return between turning points. Starting from classical ML
estimates, one can re-optimize the parameters by maximizing a
gain objective function with search algorithms. The new values of
h, j yield, by definition, a grater gain, thus information useful for
investments. This extends to MS the approach developed by [12]
for adaptive regression models, to which the method is finally
compared.

The content of the work is as follows: Section 2 presents the
MS framework and develops its trading implementation. Section 3
describes the methodology for adaptive linear models. Section 4
performs extensive applications to the daily S&P index, and
compares the results of the various solutions. Finally, we draw our
conclusions in Section 5.

2. Markov switching parameters

Consider a financial time series {Yt}T
t=1 subject to trading, where

t indicates minutes or days. Let {yt} be the detrended series and {et}
a Gaussian white noise; the models we consider in this paper are MS

versions of schemes widely used in statistics and econometrics, such
as mean level, auto-regression and linear trend, see [10,14]

yt = (Yt − Yt−1),

mean level yt = ljt + sjt et , (1)

auto regression yt = 0jt yt−1 + sjt et , (2)

unit-root model Yt = vjt Yt−1 + sjt et , (3)

linear trend Yt = ajt + bjt t + sjt et , (4)

et ∼ IN(0, 1),

jt = 1, 2,

where jt is the parameter state. The representations (1)–(4) are
motivated by the fact that stock values and exchange rates typi-
cally behave like random walks, with two possible states, which
correspond to the bull and bear market respectively. For example,
expanding the model (3) one has

t ∈ Bull ( j = 1) : Yt = v1Yt−1 + s1et , v1 ≥ v2,

t ∈ Bear ( j = 2) : Yt = v2Yt−1 + s2et , s1 ≤ s2,

and similarly for the other models, where l1 ≥ l2 and b1 ≥ b2.
Parameter inequalities are motivated by the fact that when the
market grows one has v1 > 1 [11], and when the stock values plunge
there is greater volatility. The switching between the two states
is governed by the discrete process {jt} which is non-observable,
but follows a stationary first-order Markov chain with transition
probabilities 0 ≤ pil ≤ 1. For example, in correspondence of a
market peak, the probability of passing from the bull to the bear state
is given by P( jt = 2| jt−1 = 1) = p21, whereas the probability of
staying in a bull market is given by p11 = 1 − p21.

Models (1)–(4) can be written in a common vector regression
form as

Yt = h′
jt xt + sjt et , (5)

where, in the case of the Eq. (1), one has hjt = [1, ljt ]
′ and

xt = [Yt−1, 1]′, and so forth for the other models. Given the
two-state assumption, the whole set of parameters are given by
d = [h′

1, h′
2,s1,s2,p11,p22]′, and the log likelihood function of the

model (5) can be written as

�T (d) =
T∑

t=2

log

[ 2∑
i=1

fd(Yt| jt = i) Pd( jt = i)

]
, (6)

where fd is the density function of Yt. The above expression is
motivated by the non-observable nature of the parameter state, and
by the use of the rules of conditional and total probability applied to
the joint density f(Yt, jt).

Following [13,14,20], function (6) can be computed by means of
an algorithm which also provides the estimate of the probability Pj,t
of the state j at time t. Under the assumption of Gaussian innovations,
the algorithm can be written in recursive form as follows:

fj,t =
1√

2ps2
j

exp

⎡
⎢⎣−

(
Yt − h′

j xt

)2

2s2
j

⎤
⎥⎦ , j = 1, 2, (7a)
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